2023年度纳米材料论文8篇(完整文档)
纳米材料论文摘要纳米材料由于其自身特有的物理效应和化学性质,在不同领域具有广泛的应用性,因此被誉为“21世纪最有前途的材料”。纳米材料的应用前景十分广阔,它下面是小编为大家整理的纳米材料论文8篇,供大家参考。
纳米材料论文篇1
摘 要
纳米材料由于其自身特有的物理效应和化学性质,在不同领域具有广泛的应用性,因此被誉为“21世纪最有前途的材料”。纳米材料的应用前景十分广阔,它的发展给物理、化学、材料、生物、医药等学科的研究带来了新的机遇。
通过对纳米材料及制备技术课程的学习,本文综述了对纳米材料的认识,以及其特性、分类、制备方法和其应用领域。 关键词:纳米材料;分类;特性;制备;应用 前言
1.1 纳米及纳米材料
纳米,实际上是一个长度计量单位,1 nm = 10-9 m,即一米的十亿分之一。正是这神奇的十亿分之一米,向我们开启了一个崭新的微观物质世界。当物质到纳米尺度以后,大约是在1~100nm这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是 21 世纪的三大科技之一。
1.2 纳米材料的发展简介
近年来,世界各国对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列入高科技开发项目。2005纳米科技研发预算已达到10亿美元,而且在美国该预算的优先选择领域中,纳米材料名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一。世界发达国家均对纳米产业进行战略性布局,并纷纷投入巨资。
我国的纳米材料研究起步比较晚,始于20世纪80年代末,但在“八五”期间已将纳米材料科学列入国家攀登项目。之后在基础研究和应用研究方面,我国在纳米技术研究方面也投入了大量的人力和物力。在《新材料产业“十二五”发展规划》中,纳米材料被列入6大发展重点之一的“前沿新材料”中。在国家各项科技计划的支持下,我国纳米材料及纳米科学技术也取得了比较突出的成果。 纳米材料的分类
在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数,纳米材料的基本单元可以分为3类:① 0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等;③ 2维,指在3维空间中有1维在纳米尺寸,如超薄膜,多层膜,超晶格等。按化学组成可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料。按材料物性可分为:纳米半导体,纳米磁性材料,纳米非线性光学材料,纳米铁电体,纳米超导材料,纳米热电材料等。按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,纳米储能材料等。 纳米材料的特性
纳米材料具有尺寸小,表面积大,表面能高,表面原子比例大的四大特点,并且具有小尺寸效应,量子尺寸效应,宏观量子隧道效应,表面效应四大效应。纳米材料的特性主要取决于制备方法。
3.1 表面效应
球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积与直径成反比,随着颗粒直径的变小比表面积将会显著地增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很高的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。这种表面原子的活性不但引起纳米粒子表面原子输运和构型变化,同时也引起表面电子自旋构像和电子能谱的变化。
3.2 小尺寸效应
随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质:① 特殊的光学性质;② 特殊的热血性质;③ 特殊的磁学性质;④ 特殊的力学性质。超微颗粒的小尺寸效应还表现在超导电性,介电性,能声学特性以及化学性能等方面。
3.3 量子尺寸效应
微粒尺寸下降到一定值时,费米能级附近的电子能级由准连续能级变为分立能级,吸收光谱阙值向短波方向移动,这种现象称为量子尺寸效应。量子尺寸效应产生最直接的影响就是纳米晶体吸收光谱的边界蓝移。这是由于在纳米尺度半导体微晶中,光照产生的电子和空穴不再是自由的。存在库仑作用,此电子空穴对类似于大晶体中的激子。由于空间的强烈束缚导致激子吸收峰蓝移,带边以及导带中更高激发态均相应蓝移。
3.4 宏观量子隧道效应
隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量如微颗粒的磁化强度,量子相干器件中的磁通量及电荷也具有隧道效应,它们可以穿越宏观系统的势阱而产生变化,故称之为宏观量子隧道效应。
纳米材料的物理性质和化学性质既不同于宏观物体,也不同于微观的原子和分子。当组成材料的尺寸达到纳米量级时,纳米材料表现出的性质与体材料有很大的不同。在纳米尺度范围内原子及分子的相互作用,强烈地影响物质的宏观性
质。物质的机械、电学、光学等性质的改变,出现了构筑它们的基石达到纳米尺度。纳米材料之所以能具备独到的特性,是因为组成物质中的某一相的某一维的尺度缩小至纳米级,物质的物理性能将出现根本不是它的组分所能比拟的改变。 纳米材料的制备
纳米材料的制备主要有物理合成法和化学合成法,合成过程中将材料进行纳米结构化,主要包括以下几个方面。
常见的物理合成方法有喷雾法、喷雾干燥法、喷雾热解法、冷冻—干燥法、 反应性球磨法、气流粉碎技术等。其中气流粉碎技术具有比较多的优点,它是采用高速的超音速气流来加速固体物料,使物料互相撞击或与靶撞击使物料粉碎,气流粉碎技术加工效率较高,尤其是对超硬的材料更能体现出该方法的优点,比较先进的气流粉碎设备,可以使物料在粉碎时不接触其它物质,因而可以减小对粉料的污染。
化学合成法主要有等离子体制备纳米粉末技术化学气相沉淀法、共沉淀法、均匀沉淀法、溶剂热合成法、溶胶—凝胶法、水热法制备纳米粉末技术、微乳化技术等合成方法。其中化学气相沉淀法形成的纳米材料较细,较均一,化学气相沉淀法的原理是将一种或数种反应气体通过热、激光等离子体等而发生化学反 应,析出超微粉的纳米材料制备方法。由于存在于气相中的粒子成核及生长的空间比较大,因此,该方法制得的粒子分散度较好,同时,又因为反应是在封闭容器中进行,使得化学气相沉淀法形成的纳米粒子具有比较高的纯度。 纳米材料的应用
纳米材料具有常规材料所不具备的物理特性,即具有高度的弥散性和大界面,使纳米材料具有高扩散率,蠕变和超塑性。为原子提供了短程扩散途径,使有限固溶体的固溶性增强,烧结温度降低,从而其化学活性增大。因此纳米材料的力、 热、声、光、电磁等性质不同于该物质在粗晶状态时所表现出的性质。纳米材料的高强度、高扩散性、高塑性、低密度、高电阻、高比热、强软磁性等特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特 殊导体、热交换材料、敏感元件、润滑剂等领域。以下综述了纳米材料在几个领域的应用。
5.1碳纳米管的应用
纳米碳管在电学、力学、热学等方面具有特殊的性质,因此具有很好的应用前景。
纳米碳管的电学性质及应用,碳纳米管电极具有较大的电极表面积和较高的电子传递速率,因此可增大电流响应,使得碳纳米管电化学分析性能更为优异。另外在碳纳米管内,电子的量子限域所致电子只能在石墨片中沿着碳纳米管的轴向运动,电子是沿着石墨片层的单个平面进行传导的,其电子传输通道随碳管直径的增加而增加,因此,纳米碳管具有独特的发射传导性质。改变纳米碳管格子的母体结构也可引起纳米碳管导电性的变化,因此碳纳米管的电学性能很独特,它同时具有金属性和半导体性,所以纳米碳管适宜于制备纳米电子原件。
力学性质及应用,C—C共价键使纳米碳管具有很高的强度和刚度。纳米碳管的弹性模量和相应的刚度值近似于或大于石墨的内平面值,同时纳米碳管还具备与其它碳物质不同的力学性质,比如轴向上的高弹性和径向上高塑性,这些特 性可使纳米碳管承受40%的拉伸变形而不会断裂。纳米碳管在受到压力影响时能产生流动性导致直径发生变化,其螺旋度也会随之改变,从而影响其电子特征。 利用纳米碳管的这种特性可用来制造探测机械压力的纳米传感器。
热学性质及应用,纳米碳管的热传导率体现的是石墨的内平面特性,故而它的热传导率非常高仅次于一定形式的掺杂金刚石。纳米碳管同时具有很高的长径比,此特点可以用来改善分散不连续的纤维复合物的热传导率。纳米碳管优异的 导热性能可使其发展为今后计算机芯片的导热板,也可用作发动机、火箭等各种高温部件的防护材料。纳米碳管具有高热稳定性,同时兼具高耐磨性和耐腐蚀性,可以用其制造刀具和磨具。
另外,纳米碳管还具很多其它性能,例如它的储氢特性,纳米碳管表面存在的羟基能够和某些阳离子键合,从而达到表观上对金属离子或有机物产生吸附 作用。纳米碳管粒子具有大的比表面积,也是纳米碳管具备吸附作用的重要原因。 纳米碳管还具有吸波特性,用纳米碳管做成的物体对微波雷达有好的隐身性能。
5.2 在催化方面的应用
用作高效催化剂是纳米颗粒材料的重要应用领域之一,纳米颗粒具有很高的比表面积,表面的键态和电子态与颗粒内部不同,表面原子配位不全等特点,导致表面的活性位置增加,使得纳米颗粒具备了作为催化剂的先决条件。有人预计纳米颗粒催化剂将成为本世纪催化剂的主角。光催化剂是一种具有应用潜力的特殊催化剂,纳米TiO2所具有的量子尺寸效应使其导电和介电能级变成分立的能级,能隙变宽,导电电位变得负移,而介电电位变得正移,这使其获得了更强的氧化还原能力。
5.3 在电池中的应用
纳米材料已广泛应用到化学电源中的活性材料中,并推动着电池科技发展,纳米活性材料所具有的比表面大,锂离子嵌入脱出深度小,行程短的特性,使电
极在大电流下充放电极化程度小,可逆容量高,循环寿命长;纳米材料的高空隙率为有机溶剂分子的迁移提供了自由空间,使有机溶剂具有良好的相容性,同时,也给锂离子的嵌入脱出提供了大量的空间。作为电极的活性材料纳米化后,它表面增大,致使它极化减小,而电容量增大。由此产生较强大的电化学活性特别是纳米碳管在作为新型贮锂材料、电化学贮能材料和高性能复合材料等方面的研究已取得了重大突破另外,由于纳米材料的研究目前大多处于实验室阶段,因此如何制得粒径可控的纳米颗粒,解决这些颗粒在贮存和运输过程中的团聚问题,简化合成方法,降低成本等,依然是以后还需要研究的重要问题。 总结
材料的结构决定材料的性质。纳米材料的特殊结构决定了纳米材料具有一系列的特性(如小尺寸效应、量子尺寸效应和宏观量子隧道效应等),因而出现常规材料所没有的一些特别性能, 从而使纳米材料获得和正在获得广泛的应用。通过纳米技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,已成为经济新增长点的发展基础。随着其制备和改性技术不断发展,纳米材料将在诸多领域得到日益广泛的应用。 5
参考文献
[1] 朱世东, 周根树。 纳米材料国内外研究进展。 热处理技术与装备,2010,31(3): 1~5 [2] 林晨。 纳米材料在化工行业中的应用。 化学工程与装备,2010, 17 : 120~121. [3] 周裁民, 杨雄波, 许瑞珍。 纳米材料的研究现状及发展趋势。 科技信息,2008, (17): 17~18 [4] 袁哲俊。 纳米科学与技术。 哈尔滨工业大学出版社, 2005. [5] 张莉莉, 蒋惠亮, 陈明清。 纳米技术与纳米材料。 日用化学工业, 2004,34(2): 123~126. [6] 李凤生。 超细粉体技术。国防工业出版社, 2000. [7] 李淑娥, 唐润清, 李汉忠。 纳米材料的分类及其物理性能。 济宁师范专科学校
学报,2007,28(3) 10~11. [8] 李嘉, 尹衍升。 纳米材料的分类及基本结构效应。 现代技术陶瓷,2003,96(2) 26~30.
[9] 卫英慧, 胡兰青, 许并社。 纳米材料和技术应用进展。 机械管理开发,2002,66(2): 26~27. [10] 杨剑, 滕凤思。 纳米材料综述。 材料导报,1997,11(2): 6~10. [11] 杜仕国, 施冬梅, 邓辉。 纳米材料的特异效应及其应用。 自然杂志,1999,22(2): 102~105. [12] 原继红, 韩晓云。 纳米材料的应用。 绥化学院学报,2012,32(1): 184~186. [13] 李彦菊, 高飞。 纳米材料研究进展。 甘肃石油和化工,2011,4: 7~10. [14] 孙成林。 对纳米技术和材料的认识。 硫磷设计与粉体工程,2005,1: 8~11.
纳米材料论文篇2
一维CeO2纳米材料的制备、表征及其性能研究
0 引言
纳米技术是近几年崛起的一门崭新的高科技技术. 它是研究现代技术与科学的一门重要学科,也是当前物理、化学和材料科学的一个活跃的研究领域。它是在纳米尺度上 ( 即1~100nm) 研究物质(包括分子和原子) 的特性和相互作用,纳米材料具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,在催化、光学、电磁、超导、化学和生物活性等方面呈现出优良的物理化学特性【1-2】等, 引起了各国科学家的广泛关注。
在纳米材料制备和应用研究所产生的纳米技术成为本世纪主导技术的今天,对纳米材料的研究已从单分散纳米颗粒发展到了纳米管、纳米线、纳米棒和纳米膜的制备与应用研究[101]。它们在纳米尺度电子器件、敏感器件、生物器件、纳米医药胶囊、纳米化学、电极材料和储氢能源材料等领域的潜在应用已成为国际研究的焦点[102, 103]。另外,纳米管、纳米线等一维结构的纳米材料既是研究其他低维材料的基础,又与纳米电子器件及微型传感器件密切相关[104],所以进行设计合成尺寸规则、形貌可控、结构稳定的纳米管、线等一维纳米材料及其相关物性的研究就有着重要的理论意义和学术价值。
作为新材料中的一员——稀土纳米材料的研究也成为世界各国科学家研究的热点之一。纳米二氧化铈具有晶型单一,电学性能和光学性能良好等优点,因此被广泛应用于SOFCS电极、光催化剂、防腐涂层、气体传感器、 燃料电池、离子薄膜等方面【3-4】。近年来国内外研究者对纳米二氧化铈的制备及性能等进行了大量研究。下面就近年来有关二氧化铈纳米管和纳米线的制备方法及其性质和应用研究报道进行综述。
[101] Yang R., Guo L., Chinese Journal of Inorganic Chemistry, 2004, 20, 152. [102] Philip G. C., Zettl A., Hiroshi B., Andreas T., Smalley R. E., Science, 1997, 279, 100. [103] Hu J., Ouyang M., Yang P., Lieber C. M., Nature, 1999, 399, 48. [104] Huang Y., Science, 2001, 294, 1313.
1、一维CeO2纳米材料的制备方法
一维纳米结构材料如纳米线(棒)、纳米管等的制备通常采用水热合成法、模板法、非模板法等。 1.1声波降解法
这种方法是近年来提出的一种较新颖的方法,方法简单是其最大的特点。X i a等[401]以此法制得了硒的纳米线(见图1)。他们首先采用过量的联氨还原硒酸得到了球状的无定形硒胶体( 粒径约在 0.1 -2um),然后进行干燥、在醇中重新分散并对其施加超声辐照。从图中可以看出,开始时由于声空化作用在胶体表面产生品种,随后胶体不断消耗,直至完全长成纳米线。此外Zhu等[402]将 Bi( NO3)2, Na2S2O3和三乙醇胺(TEA)的水溶液在20kHz,60W·c m- 2 的高强度超声下辐照2h,制得了直径10-15nm,长度60-150nm的Bi2S3纳米棒。产品结晶度良好、形貌均一,且纯度较高。
[401] Xia Y,Gates B, Mayers B,et a1.A sonochemical approach to the synthesis of crystalline
selenium nanowires in solutions and on solid supports [J] Adv. Mater., 2004,16(16):1448. [402] Zhu J M,Yang K,Zhu J J,et a1.The mierostrueture studies of bismuth sulfide nanorods prep- ared by sonochemical method [J].Optical Material,2003,23 ( 1-2 ):89.
1.2水热合成法
该法是指以水为分散溶剂,将反应物放入内含聚四氟乙烯衬底的不锈钢反应釜中,在高温高压条件下使之发生化学反应。先利用水热反应得到不同形貌的前驱体,再于空气中在一定温度下灼烧前驱体而得到所需纳米材料。这是一种制备形貌各异的纳米氧化物的有效方法之一[307]。该法具有条件温和、产物纯度高、晶粒发育完整、粒径小且分布较均匀、无团聚、分散性好、形状可控等优点,且其合成过程简单、装置简易及促使反应物能够在较低的温度反应生长,是一个非常有应用前景的合成新型一维结构稀土化合物的方法。
Xu等〔308〕以Dy2O3粉末为前驱体用水热法成功的合成了形貌独特的Dy(OH)3纳米管。水热合成法不仅可以制备出单一稀土氧化物 纳米线,而且可以制备出复合氧化物纳米线,Liu等[310]采用水热合成法合成出了La0.55Ba0.5MnO3 (A=sr,Mn)纳米线。水热法过程简单、原料价格低廉且容易得到形貌独特的稀土材料,是一种可推广到制备其它稀土化合物的方法。 1.3模板合成法
水热合成法在制备一维纳米结构稀土化合物的优势是简单易行,但是不足之处在于粒子大小和形貌不易控制、粒子无序排列等。因此探索既能方便地制备出粒子的尺寸和形貌可控、粒子排列又有序的方法是纳米材料研究领域中的一个难点。近年来,随着对纳米材料研究的不断深人,模板合成方法越来越引起人们的关注。根据模板剂的结构可分为软模板法和硬模板法。软模板法是指利用表面活性剂液晶模板的原理诱导粒子的生长,硬模板法则是以含有有序多孔材料为模板,在孔内合成所要的各种微米和纳米有序阵列[315] 1.3.1软模板合成法
氧化物纳米管、纳米线的软模板法合成途径是通过溶液中表面活性剂的自组装或有机凝胶的诱导组装而实现的。Yada等[316]以十二烷基硫酸钠为软模板、尿素为沉淀剂的均匀沉淀法通过分子自组装方式合成出了稀土氧化物纳米管。 1.3.2硬模板合成法
硬模板合成法是利用硬模板剂的孔径限制和诱导纳米线、纳米棒的生长而得到形貌各异的一维纳米材料,其最大特点是能真正实现对材料形貌、粒子大小的调变,从而成为应用最广泛的可控制备方法之一。常用的硬模板有阳极氧化铝(AAO)、聚碳酸酯及碳纳米管等。采 用硬模板法合成纳米材料时应考虑3个方面情况:(l)前驱体溶液必须能够湿润孔(即亲水/疏水特性);(2)沉积反应过程不宜太快,以免堵塞孔道;(3)在反应条件下,基体膜必须具备高的热稳定性和化学稳定性。基于此,前驱物在模板孔内的沉积方式通常有电化学沉积法、化学镀、化学聚合、化学气相沉积、溶胶一凝胶沉积及模板在溶液中直接浸渍等6种方式,而最常用的则为最后两种方式。所得纳米材料的形貌及粒径大小除与所选硬模板剂有关外,还与其沉积方式、时间等有很大关系。 1.4非模板合成法
除了水热法和模板法可合成出一维纳米结构材料外,Yada等[323]提出了无需利用模板剂的新合成方法,该法是添加无机物Na2SO4,NaHPO4等,通过共存离子自组装进人反应物混合体系,进而形成氧化物空心纳米管。通过比较Yada的模板合成法和无模板合成法,可知无模板的合成法所得稀土氧化物纳米管的种类多于模板合成法的,且前者的纳米管直径较大。
[307] Xu R R, Pang W Q. Inorganic Synthetic and Preparative Chemistry [M]。Beijing:Higher Education Press,2001. [308] Xu A W, Fang Y P, You L P, et al. A simple method to synthesize Dy2O3 and Dy(OH)3 nanotubes [J]。 J. Am. Chem. Soc., 2003,125:1494. [310] Liu J B, Wang H, Zhu M K, et al. Synthesis of La0.55Ba0.5MnO3 (A=sr,Mn) by a hydrothermal method at low temperature [J]。 Mater Res.Bull.,2003,38:817. [315] 包建春,徐 正。纳米有序体系的模板合成及其应用[J]。无机化学学报, 2002, 18(10): 965. [316] Yada M, Mihara M,Mouri S, et al. Rare earth oxide nanotubes templated by dodecylsulfate assemblies[J]。 Adv. Mater., 2002,14(4):309. [323] Yada M, Taniguchi C,Torikai T, et al. Hierarchical two-and three-dimensional microstructures composed of rare-earth compound nano-tubes [J]。 Adv. Mater., 2004,16(16):1448. [001]吕仁江,周志波,高晓辉。 CeO2 纳米线阵列的制备[J]。无机化学学报, 2002, 18(10): 965.
纳米CeO2粉体及其固溶体的研究进展
摘要:本文综述了纳米CeO2的几种主要制备方法,以及CexZr1-xO2固溶体在汽车尾气净化催化剂中的作用、铈锆氧化物的体相结构及影响铈锆氧化物固溶体储氧能力( OSC)和织构热稳定性的因素对其在催化剂中的应用作了简要陈述。介绍了掺杂对CeO2 结构的影响及其在催化剂方面的应用研究,展望了掺杂对改进CeO2性能的研究方向。
关键词:纳米CeO2;掺杂;CexZr1-xO2,三效催化剂;储氧能力
0 引言
由于纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等, 使其呈现出许多独特的性质, 在结构与功
能陶瓷, 涂层材料 , 磁性材料 , 气敏材料, 催化材料 , 医药材料等
领域具有广阔的应用前景L 1 ] 。
纳米稀土氧化物粉末是纳米稀土材料的重要组成部分, 它
既是一种可实用的新材料, 同时又可为其它大块新材料的制备
提供原料。其中, 纳米 C e O。 粉末由于具有独特的立方萤石型结
构特征L 2 ] , 尤为引人关注。近年来, 国内外研究人员已用多种方
法制备出了单一的和某些复杂 的纳米 C e O 粉末, 并详细研究
了它们的物性及在多种领域的应用。
纳米CeO2具有比表面积大, 储氧性能好, 负载金属分散度高等许多优良特性, 掺杂对CeO2的结构及性能又有进一步改善, 因而是目前研究的热点。
CexZr1-xO2固溶体(简称CZ)具有高的储氧能力( OSC)[111-112]和良好的热稳定性[113],用作汽车尾气净化催化剂载体受到了广泛的关注,是目前催化剂领域的研究热点之一。研究工作主要集中于CZ的结构表征,结构与热稳定性、OSC的关系以及CZ基催化剂的催化作用等。本文主要介绍近年来国内外有关CZ在上述方面的研究进展 。
0 引言
纳米技术是近几年崛起的一门崭新的高科技技术. 它是研究现代技术与科学的一门重要学科,也是当前物理、化学和材料科学的一个活跃的研究领域。它是在纳米尺度上 ( 即1~100nm) 研究物质(包括分子和原子) 的特性和相互作用,纳米材料具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,在催化、光学、电磁、超导、化学和生物活性等方面呈现出优良的物理化学特性【1-2】等, 引起了各国科学家的广泛关注。利用这些特性所开发出来的多学科的高新科技,成为特殊功能材料发展的基础。纳米氧化物作为纳米材料中的重要一员,在精密陶瓷、光电池、磁记录和传感器、催化剂、发光材料等方面有着重要的应用。因此,人们对纳米氧化物的制备和性能进行了广泛的研究 。
作为新材料中的一员——稀土纳米材料的研究也成为世界各国科学家研究的热点之一。纳米二氧化铈具有晶型单一,电学性能和光学性能良好等优点,因此被广泛应用于SOFCS电极、光催化剂、防腐涂层、气体传感器、 燃料电池、离子薄膜等方面【3-4】。近年来国内外研究者对纳米二氧化铈的制备及性能等进行了大量研究。纳米技术简介【5】
纳米技术(nanometer technology)主要针对 1~100 nm之间的尺寸,该尺寸处在原子、分子为代表的微观世界和宏观物体交界的过渡区域 ,这样的系统既非典型的微观系统亦非典型的宏观系统 , 突出表现为四大效应: 表面效应:指纳米粒子的表面原子数与总体积原子数之比随粒径的变小而急剧增大 ,从而引起的性质上的突变。粒径到达 10 nm 以下 ,表面原子之比迅速增大。当粒径降至 1 nm时 ,表面原子数之比超过 90 %以上,原子几乎全部集中到粒子的表面,表面悬空键增多 ,化学活性增强。
体积效应:由于纳米粒子体积极小 ,包含极少的原子 ,相应的质量也很小。因此 ,呈现出与通常由无限个原子构成的块状物质不同的性质 ,这种特殊的现象通常称之为体积效应。
量子效应:当纳米粒子的尺寸下降到一定程度 ,金属粒子费米面附近电子能级由准连续变为离散;纳米半导体微粒存在不连续的最高被占据的分子轨道能级和最低未被占据的分子轨道能级 ,从而使得能隙变宽 ,这种现象 ,称为量子尺寸效应。
宏观量子隧道效应:纳米粒子具有贯穿势垒的能力称为隧道效应。近来年 ,人们发现一些宏观量 ,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应 ,它们可以穿越宏观系统的势垒。
研究表明,纳米材料的颗粒尺寸小,表面的键态和电子态与颗粒内部不同,表面原子配位不全,导致表面活性位置增加,而且随着粒径的减小,表面光滑度变差,形成了凹凸不平的原子台阶,从而增加了化学反应的接触面,具有很强的催化性能。因此,纳米催化材料是纳米材料研究的一个重要方向。纳米稀土材料是纳米催化材料的一个重要组成部分,它既具有纳米材料的优点,又具备稀土材料化学活性高、氧化还原能力强和配位数多变的特点,集两种材料的优势于一身,是比纯粹的纳米材料和稀土材料更优良的的新型复合材料;广泛应用于稀土化合物纳米粉体、稀土纳米复合材料、稀土纳米环保材料、稀土纳米催化剂等方面,具有广阔的市场前景。氧化铈是稀土族中一个重要的化合物,是一种用途非常广泛的材料,在玻璃、陶瓷、荧光粉、催化剂等领域中有广泛的应用,特别是在机动车尾气净化催化剂中,氧化铈作为一种重要的助剂,对改进催化剂的性能起着举足轻重的作用 [6-7] 。
c e ( ) 2 将在高薪技术领域发挥更大的潜力
二氧化铈的资源状况
我国稀土资源具有分布广, 品种多, 质量好的特点I 5 ] 。
据公布资料显示, 我 国稀土工业储量为 4 3 0 0万吨( 以 R E O
计) , 远景储量为 4 8 0 0万吨, 占全球储量 9 1 0 0万吨的 4 3 . 4
%左右, 居全球之首。铈在地壳中的丰度占第 2 5位, 与铜的丰度相当。
铈与其它稀土元素一样性质活跃, 为亲石元素。铈的主
要资源来 自氟碳铈矿和独居石。工业开采的铈的稀土矿物
主要有包头混合型稀土矿( 氟碳铈矿和独居石混合的矿物 ) 、 独居石、 氟碳铈矿及离子型吸附矿, 山东微山和四川冕宁地
区的单一氟碳铈矿床。这些矿物中氟碳铈矿、 独居石 、 氟碳
钙铈矿含铈量( 以C e 2 o 3 计) 都超过 5 0%, 如: 氟碳铈矿中已
达 7 4%, 独居石含铈量约 6 O%, 氟碳钙铈矿含铈量为 5 3 ~
6 2%。这为我国大力发展稀土铈工业提供了必要的物质基
础和优势。
目前我国c a 3 2 产品的原料包括下列几种_ 6
J : ( 1 ) 混合型
氧氧化稀土[ R E ( OH)
] 。它是由混合型稀土精矿( 包头稀土
矿) 及氟碳铈矿精矿经处理后而制成的。R E( OH) 中含
R E O 6 0%, C e O 2 5 0%。( 2 ) 稀土精矿 ( R E O>~5 0%, C e O 2 4 8
%~5 0%) 。它可用包头稀土矿或 四川氟碳铈矿精矿处理
后而制 成。( 3 ) 硫酸 稀土 和氯化稀 土 [ R E 2 ( S ( ) 4 ) 3中含
R E O 5 0%, C e O 2 5 0%; 在 RE C l 中含 R E o≥4 5%, C e C h ≥ 5%] 。均可由稀土精矿处理后而获得。上述三种原料 为
我国目前生产二氧化铈提供充足的原料。 国内外应用研究现状
目前旧内外正在开发和研究应用的领域
( 1 ) 紫外线吸收剂方面的应用
目前大量使用的是有机紫外线吸收剂, 有饥物的最大缺
点足稳定性差, 容易分解 , 分解产物还会加速其它高分子材
料老化, 最终影响产品的长期使用效果。此外有机吸收剂本
身或其分解产物具有一定的毒性, 符合绿色环保要求, 影
响产品出口和使用范围。
普通氧化铈用于紫外战吸收0 已在玻璃行业得到应用。 纳米 C e 的4
f
电子结卡 勾, 埘光吸收非常敏感, 而且吸收波 0 3 1 3 2 左右 段大多在紫外区( 如图( 3 ) 示 , 实验室自制粒度在 的( 的紫外吸收网) , 冈此所得的纳米复合抗紫外线剂,n m) , 高效长久( 比
具有吸收效率高、 吸收波段宽( 2 0 0 ~4 0 0 有机抗紫外线剂要长数倍) , 防止高分子材料老化的功能将
更强, 绿色环保, 而且综合成本低。粒径 8
n m的) 2 超微
粉对紫外线吸收能力和遮断效果显著, 可用于基材涂料提高
耐候性。目前我国许多公司
在开发将其应用于涂料 , 防止
坦克 、 汽车 、 储油灌等的紫外老化; 日本无机化学公司在该方
面也研制成功 了一种名为 C e f i g u a ~的紫外线遮断剂, 并建
立 铈防护剂生产线, 该产品与同类产品比较, 紫外线遮断
效果相同, 但透明性较其它产品优 良。今后, 随着铈防护剂[10]
纳米材料因其独特 的表面效应、 量子尺寸效应等而表现 出
不同于常规材料的特殊性能 , 因而在各个领域得到了广泛 的使
用。 我国拥有丰富的稀土资源 , 由于稀土元素具有独特的 f 电子
构型, 因此具有其独特的光 、 电、 磁性质。 为了进一步研究和开发
新型纳米稀土材料 , 纳米稀土材料 的合成及应用成为了世界各
国科学家研究的热点之一。
C e Oz 属于立方晶系 , 具有萤石结构。 C e 0。 作为一种典型的稀土氧化物有着多方面的功能特性 , 被广泛用于 电子陶瓷、 玻璃
抛光、 耐辐射玻璃 、 发光材料等。最新研究表明, 由于Ce O。 独特 的储放氧功能及高温快速氧空位扩散能力 , 因此可以被应用于
氧化还原反应 中, 成为极具应用前景的催化材料n ] 、 高温氧敏
材料[ ‘ ] 、 p H传感材料n ] 、 电化学池中膜反应器材料n 3 、 燃料 电
池的中间材料 ] 、 中温固体氧化物燃料 电池( S OF C) 用电极 材
料[ g
0 ] 以及化学机械抛光 ( C MP ) 浆料[ , 在现代高新技术领域
有 着巨大的发展潜力。而高科技的发展对 C e O。 的要求越来越高 , 因此 C e O。 纳 米粉体的制备技 术也已成为必须迫切解决的问题。本文即根据最新 资料文献 , 重点介绍了纳米 C e O。 在高新
技术领域中的应用 以及国内外有关纳米 C e O。 制备方法的研究
进展 , 同时对纳米 C e O。 研 究的发展趋势提 出了新的展望 , 以期
为进一步深入研究和开发高性能新型 C e O。 功能纳米材料提供
参考和借鉴 。
纳米氧化铈在高新技术领域的应用. 1
在汽车尾气探测及净化催化中的应用 随着汽车用量的增加, 环境污染越来越严重 。 由于环保法规
日趋严格 , 汽车尾气探测和净化用催化剂的消费量大幅度增加 , 这不仅是因为汽车尾气净化已经普及, 而且环保标准逐步提高 。
表 1 所示为美国联邦政府 、 加利福尼亚州和欧盟制定的汽车尾
气排放标准[ 】
。
显然 , 如此严格的标准单靠汽车工业本身的努力远远不够 , 必须开发新型材料来限制汽车尾气的排放以控制 日益严重的环
境污染 。C e 02 于还原气氛中很容易被还原为低价氧化物 , 转化为缺氧型非化学计量氧化物 C e O
… 尽管在晶格上失去相当数
量的氧而形成大量氧空位 , 但 C e O
一
仍然能保持萤石型晶体结
构。 这种亚稳氧化物暴露在氧化环境中, 又极 易被氧化为 C e O 。
由于 Ce 0 具有这种独特的储放氧功能 以及高温化学稳定性和
快速氧空位扩散能力( 1 2 4 3 K时的扩散系数为 1 0 c m / s ) , 而成
为性能优越的高温氧敏材料, 最适合作 为探测汽车尾气氧浓度
和控制发动机空燃 比的探头(
一探头) , 以及探测低 氧分压的氧
敏传感器
] 。 C e O 能够改善催化剂中活性组分在载体上的分散
度, 因此也被广泛应用于催化氧化还原反应 。 在控制汽车尾气过
程中, C e O 是三效催化剂中最重要的助剂[ 1 。研究表明L 1
] ,利用纳米 C e 0 的 比表面积大 , 化学活性高 , 稳 定性好的特性 ,将 c e 0 作为助剂与添 加剂 , 与贵金属 ( P t , P d, R u等 ) 联用 , 也
可将 C e O 作为载体或做成复合载体 , 负载过渡金属 , 可很大程
度提高储氧放氧能力 , 明显改善催化性能 。
1 . 2 在化学机械抛光( C MP) 中的应用
化学机械抛光 ( C MP ) 是集成 电路 ( I C) 生产中硅晶圆片整
个沉积和蚀刻工艺的重要组成部分。它借助 C MP浆料 中超微
研磨粒子的机械研磨作用以及浆料的化学腐蚀作用 , 用专用抛
光盘在 已制作 电路 图形的硅 晶圆片上形成高度平整的表面, 是
目前能够提供超大规模集成电路制造过程中全局平坦化的一种
新技术n 。其中应用最广泛的是层间介电层 ( I L D) 的抛光, S i O2
则是最常用的层间介电层材料 。 要获得最佳的抛光效果, 需要制
备高效、 高质、 高选择性的 C MP浆料。
由于纳米 C e O 具有强氧化作用 , 作为层 间 S i O 介 电层抛
光的研磨粒子, 具有平整质量高、 抛光速率快、 选择性好的优点 。
C e 0 粒子 比 s i 0 粒子柔软[ 1 , 因此在抛光过程中 , 不容易刮 S i O 抛光面。尽管 C e O 粒子硬度小, 却具有抛光速率快 的 点, 这主要在于 C e O 粒子在抛光过程中所起的化学作用。 C 粒 子抛 光 S i 0 介 电层 的机 理 如下
:
一 一
中的界面氧原子将与细胞色素 C中赖氨酸残基上的质子化氨基
相互作用并形成细胞色素 C与电极之 间的电子传递通道 , 可以
获得细胞色素 C的快速传递反应 。C e 0 粒子越小, 比表面积越
大, 界面的氧原子数就越多, 因而可在电极表面产生越多的电化
学活 性 点 , 得到 更好 的反应 促进 效 果L 2 。
1 . 4 在燃料电池 电极 中的应用
电极在燃料 电池电化学 中有着十分重要的作用 , 以 YS Z为
电解 质, 阴阳两极分别 为 L a ( S t ) Mn O。和 Ni — YS Z的 S OF C一
度 占据统治地位 , 但是 C H。 在 Ni 上快速积炭 , 阻碍 了 s 0F c甲
烷的直接氧化反应路径的开发 , 而且以 Ni 为阳极催化剂存在着
抗硫能力差 , 长时间操作会引起 Ni 烧结 。 C e O 作为一种新型材
料, 有着以下几个优点 : ( 1 ) C e O 是一种混合 型导体 。可 以将阳
极氧化反应面扩大到 TP B面 ( 气相一 电极催化剂一 电解质三者的 界面) ; ( 2 ) C e O 的离子电导大于 YS Z, 可 以协助 01从 电解质
向阳极传递 ; ( 3 ) C e O 易于储氧、 传输氧 , 纳米级 C e 0 比表面积
大, 增加了储氧的能力。 因此 C e 0 能够在阳极上应用 , 解决 C Ht
直接应用于固体氧化物燃料电池的积炭问题L 2 。
[1]Charlier J C,Vita A D,Blasé X Science,1997,275,646 [2]Nie S M,Emory S R,Science,1997,275,1102 [3]Izaki M,SaitoT,Chigane M.J Mater Chem,2001,8(11):1972—1974.
[4]Suzuki T,Kosacki I,Anderson HU,Colomban P.J AM Ceram Soc,2001, 9(84):2007—2014.
[5]张立德,牟季美等编著。纳米材料和纳米结构[M],北京:科学出版社,2001.2. [6]Alessandro Trovarelli,Carla de Leitenburg,Marta Boaro,et al.Giuliano dolceffi[J]。Catalpsis Today,1999,50:353
[7]Josph R,Theis Mark V,Casarelia Stephen T,et al.SAE Paper,931034,1993.
[111] Trovarelli A, et a1. Nanophase fluorite –structured CeO2-ZrO2 catalysts prepared by high-e nergy mechanical milling [J]。 Journal of Catalysis,1997,169(4):490 -502.
[112] Formasiero P, et a1. Rh-loaded CeO2-ZrO2 solid solutions as highly effects oxygen exchanger:Dependence of the reductions behavior and the oxygen storage capacity on the structural properti -es[J]。 Journal of Catalysis, 1995, 151(1):168 —177.
[113] Piholat M, et a1. Thermal stability of doped ceria: experiment and modeling [J]。 J Chem Soc Faraday Trans, 1995, 91(21):3941—3948.
纳米材料论文篇3
摘要:本文主要研究了污染物的光催化降解原理, 进一步分析了光催化纳米材料在环境保护工作中的应用, 同时对于光催化纳米材料的应用趋势和方向也进行了必要的研究, 希望对这一工作的开展提供一定的指导作用。
关键词:光催化; 纳米材料; 环境保护;
工业废水和废气中都含有较多的毒害物质, 比如有机磷农药或是二氯乙烯等, 这些物质对于人体的影响都是十分明显的。传统的水处理方式, 比如吸附法、混凝法等方法在现阶段实际应用环节中仍然存在较大的困难, 效果并不理想, 所以在今后的实际发展过程中就需要不断探索和获取一种经济、合理的方式, 实现对传统方法处理后水中的残留物质进行更有效的降解。1976年, 科学家在对紫外线光照射下对纳米Ti O2进行了研究, 发现这种方式可以将难以降解的有机化合物多氯联苯脱氯进行有效降解。当前, 已经发现超过3000余种难降解的有机化合物都可以借助此种方式进行降解, 尤其是水中有机污染物浓度较低或是其他降解方式不佳的时候, 这项技术更是能发挥出前所未有的技术优势。
一、光催化纳米材料
光催化的纳米材料采用的绝大多数都是金属氧化物或是硫化物等半导体材料, 是一种特殊的电子结构。和金属相比, 这种半导体存在明显的不连续性, 在对电子的低能价带进行填满的过程中会和空的高能导带存在明轩的禁带, 所以当二者产生的能量大于光照射的时候, 在价带上的电子就会被转移到导带上, 最终在半导体表面形成具备高活性的电子[1]。
二、光催化降解原理
在光催化反应中, 获取光激发所出现的空穴, 和对给体或是受体产生的作用也是有效的。所以在实际工作中为了确保光催化反应能更有效的进行, 就应该适当降低电子和空穴之间的简单复合。
三、光催化纳米材料在环保中的应用
(一) 光催化纳米技术在污水处理中的应用
传统的水处理方式中可以对污水中出现的悬浮物质或是泥沙等大颗粒的污染物进行去除, 但是对于浓度较低的可溶性物质却很难进行有效的处理, 并且由于这项工作的工作效率比较低, 花费的经济成本比较高, 所以很多时候并不能进行有效的处理。但是借助纳米材料的光催化方法, 就可以将很多难以降解而定污染物进行合理转变, 从而将原本水中的污染物转化为水分子或是二氧化碳等无污染的分子物质。
比如在对有机废水的处理环节中, 光催化纳米材料就可以将水中的绝大多数有机污染物进行转化, 使其成为无污染的物质, 比如可以将酸。表面活性剂等有机污染物进行氧化, 使其转变为水或二氧化碳等无害的物质。借助纳米材料可以的对物质表面性能进行转变, 通过这种方式对水中纳米的分散性进行优化。从而实现对光激发作用下产生的电子和空穴复合问题进行抑制, 进一步实现对催化活性的提升[2]。
再比如对无机废水的处理环节中, 由于无机物在纳米粒子表面存在明显的光化学活性, 因此光催化纳米材料后所出现的电子和空穴都可以对高氧化状态的物质进行还原, 也就是借助此种方式实现对无机物污染的有效消除。
(二) 光催化纳米技术在大气污染治理中的应用
对大气污染产生影响的主要成分就是二氧化硫、一氧化碳等物质, 这些气体如果长期存在于空气中必然会对人体的健康造成不利的影响。光催化剂可以和一些气体吸附剂进行有效结合, 从而更有效的实现对降解浓度的有效降低。
将一些对日光有相应的半导体纳米材料涂抹在墙壁或是其他合理的位置上可以形成空气清洁剂的作用, 而二氧化硫、一氧化碳等物质吸附在上面的时候, 就可以在光的作用下被转变为无害物质, 这种方式对于去除臭气的影响也是十分重要的环节[3]。纳米对于氟利昂具备较强的光催化活性, 因此将这以技术进行融合后, 可以在表面对酸性进行催化, 通过这种方式获取较高的光催化活性作用, 这对于物质稳定性的提升也将起到一定的帮助作用。
此外, 纳米技术还能对室外的气象有机污染物进行分解, 比如在紫外线的照射下, 纳米材料可以将室内装饰建材中产生的甲醛、氯乙烯等物质进行有效分解。将活性炭纤维作为重要载体的过渡金属离子中适当进行纳米材料光催化剂的融合, 通过此种方式将紫外线光照射下浓度更低的甲醛进行或降解, 但是这种技术手段对于浓度高的污染物降解效果比较差, 同时由于使用时间的增加, 最终催化剂的活性也将大大降低, 最终甚至会出现活性的完全消失。
结束语:
综上所述, 光催化纳米材料在当前环境保护中有着越来越显着的应用, 不仅可以对难处理的污染物进行有效处理, 同时还能借助自身的吸附作用对低浓度的有害物质进行分解。在当前光催化纳米技术的不断发展过程中, 环境保护工作效率和质量也必然会得到显着提升。总而言之, 当前我国环境保护工作已经受到了越来越多的影响, 甚至对人们的身体健康产生了威胁, 所以在此种背景下, 更需要加强对相关技术的研究, 不断为我国环保工作的顺利开展提供帮助作用, 实现可持续工作的顺利进行。
参考文献
[1]熊玉宝。光催化纳米材料在环境保护中的应用研究[J].低碳世界, 2018, 58 (06) :28-29.
[2]王骞。Ti O2光催化纳米材料在环境保护中的应用[J].鞍山师范学院学报, 2016, 13 (06) :17-20.
[3]于兵川, 吴洪特, 张万忠。光催化纳米材料在环境保护中的应用[J].石油化工, 2014, 36 (05) :491-495.
纳米材料论文篇4
TiO2纳米制备及其改性和应用研究进展
于琳枫(12化学1班)
摘 要: 二氧化钛纳米管由于新奇的物理化学性质引起了广泛的关注,本文就近年来在制备方法﹑反应机理﹑二级结构及掺杂和应用方面予以综述,并讨论了今后可能的研究发展方向。
关键词: 二氧化钛, 纳米管, 制备, 反应机理, 二级结构
0 引言
TiO2俗称钛白粉,无毒、无味、无刺激性、热稳定性好,且原料来源广泛易得。它有三种晶型:板钛矿、锐钛矿和金红石型。TiO2最早用来做涂料。
自从1991年Iijima发现碳纳米管以来,已经用碳纳米管模板合成出各种不同的氧化物纳米管,如SiO2,V2O5,Al2O3,MoO3等,二氧化钛由于其化学惰性,良好的生物兼容性,较强的氧化能力,以及抗化学腐蚀和光腐蚀的能力,价格低廉,在能量转换﹑废水处理﹑环境净化﹑传感器﹑涂料﹑化妆品﹑催化剂﹑填充剂等诸多领域引起了人们极大的关注。研究结果表明:TiO2的晶粒大小,形状,相组成或表面修饰以及其它成分的掺杂对其性质﹑功能有显著的影响,纳米管的比表面积大,因而具有较高的吸附能力,有良好的选择性,可望具有新奇的光电磁性质,具有很好的应用前景。本文对二氧化钛纳米管的制备,形成机理的最新进展进行综述,并对今后的发展方向予以展望。 TiO2纳米材料的制备
1.1 气相法
TiO2纳米材料的气相合成主要是在化学技术和物理技术上发展起来的。由于反应温度高。气相法具有成核速度快、产品结晶度高、纯度高、生成粒子团聚少、粒径易控制等优点。气相法可以合成各种形貌的TiO2薄膜或粉体:纳米棒、纳米管、纳米带等。最常使用的气相法是高温溅射沉积法(SPD)。Ahonen等用钛醇盐做前驱体。采用SPD法合成了TiO2纳米粉体和薄膜。其他的气相制备技术 1
包括:直流电溅射法、高频无线电溅射法、分子束取向生长法和等离子体法等。
1.2 液相法
目前制备TiO2纳米材料应用最广泛的方法是各种前驱体的液相合成法。这种方法的优点是:原料来源广泛、成本较低、设备简单、便于大规模生产。但是产品粒子的均匀性差,在干燥和煅烧过程中易发生团聚。应用最普遍的液相制备方法包括液相沉积法和微乳液法等。
1.2.1 液相沉积法
液相沉积法是以无机钛盐作原料,通过直接沉积来制备功能TiO2粉体和薄膜的液相法。Deki等用(NH4)2TiF6和H3BO3的水溶液为起始溶液,制备了TiO2薄膜。Imai等用添加了尿素的TiF4和Ti(SO4)2的水溶液制备了不同形貌的TiO2纳米材料。液相沉积法具有以下优点:对仪器要求比较低,温度要求低(30~50℃),基片选择比较广等。
1.2.2 微乳液法
微乳液法制备纳米TiO2是近年来才发展起来的一种方法。微乳液是指热力学稳定分散的互不相溶的液体组成的宏观上均一而微观上不均匀的液体混合物。该法的制备原理是在表面活性剂作用下使两种互不相溶的溶剂形成一个均匀的乳液。利用这两种微乳液间的反应可得到无定型的TiO2,经煅烧、晶化得到TiO2纳米晶体。贺进明等以TiCl4为原料、在十六烷基三甲基溴化铵、正己醇、水组成的微乳液体系中,在较低温度下,制备了球形、花状、捆绑丝和星形的金红石型TiO2纳米颗粒。微乳液法得到的粒子纯度高、粒度小而且分布均匀,但稳定微乳液的制备较困难。因此,此法的关键在于制备稳定的微乳液。 TiO2纳米材料的反应机理
2.1氧化钛纳米管形成的反应机理
目前,对二氧化钛纳米管的形成机理和组成尚存在分歧。一般认为,锐钛矿或者金红石相以及无定形二氧化钛在碱性条件下转换为纳米管都要经过单层的纳米片的卷曲,类似于多层碳纳米管形成的机理,即从1D到2D,再到 3D的组合过程。Sugimoto等研究证实了层状的质子化的二氧化钛纳米片的存在,Sun和Masaki各自报道了钛酸钾或者钛酸钠形成的纳米带。在碱性条件下,各种钛酸盐可以形成层状的结构,再通过折叠或卷曲形成纳米管,但折叠或卷曲的顺序
尚不确定。理论上钛纳米带折叠或卷曲形成纳米管时,可形成下列3种形状:(a)蛇形的,即单层纳米管的卷曲;(b) 洋葱式的,即几个有弱相互作用的纳米片的卷曲;(c)同心式的,通过卷曲或者折叠成多层的纳米管。但实际上,(c)种形状在合成时很难出现。Yao和Ma通过TEM研究分别证实了(a)和(b)构型钛纳米管的存在。
梁建等则认为钛纳米管的生长机理符合3-2-1D的生长模型,在水热合成的过程中,在高压高温和强碱作用下,二氧化钛块体沿着(110)晶面被剥落成碎片,在片的两面有不饱和悬挂键,随着反应的进行,不饱和悬挂键增多,使薄片的表面活性增强,开始卷曲成管状,以减少体系的能量,这一点从反应中间产物中观察到大量的片状及卷曲态得的到证明。Dimitry V. Bavykin[19]等系统地研究了合成温度以及TiO2/NaOH mol 比对制备二氧化钛纳米管形貌的影响。认为 图3-b 符合氧化钛纳米管的形成机理,并给出了形成机理的原始驱动力的解释。Dimitry V. Bavykin等进行了氧化钛纳米管形成的热力学和动力学研究。该模型见图4 能够很好的解释实验中增加TiO2/NaOH的摩尔比,氧化钛纳米管的平均管径也增大。同时也可以解释反应温度增加有利于纳米管的平均管径增大。
2.2 纳米管的热稳定性及氧化钛纳米管的晶型
由于二氧化钛纳米管为无定形结构,在热力学上,属于介稳态。因此研究温度对其热稳定性的影响颇有必要。王保玉等以TiO2为原料制备成TiO2纳米管,通过不同温度焙烧得到不同的样品,用TEM,XRD,FT-IR,BET等手段详细的研究了温度对晶型,比表面积的影响。研究表明,在300 ℃和400 ℃焙烧存在着两次比表面积的突降,用化学法合成的纳米管在400 ℃时,比表面积降到很小,管的结构严重被破坏。用化学法合成的纳米管是无定形的,而模板法制备的纳米管为锐钛矿型的。这可能是因为化学法制备的纳米管为多层,层与层之间不能形成三维空间的点阵结构。而王芹等研究则发现钛纳米管经过400 ℃热处理后能保持其纳米管的形貌,600 ℃有纳米管间烧结的现象,800 ℃时管的形状完全被破坏。可见合成方法的不同,氧化钛纳米管的热稳定性也有很大的差异。
Graham Armstrong等用水热法合成的氧化钛纳米管晶型为TiO2-B,具有竹子状的二氧化钛,是以TiO6八面体为基础通过共用边和共顶点形成的多晶,不同于锐钛矿相,金红石相和板钛矿相,密度比上述三种晶型都稍低。但XRD的 3
结果表明,TiO2-B的结构中仍还有痕量的锐钛矿相。梁建等用水热法合成,控制温度130 ℃,晶化时间2~3天,成功制备了多层的锐钛矿和金红石混晶的TiO2纳米管。王保玉等研究发现,氧化钛纳米管为多层管,每个单层相当于 一个氧化钛分子的厚度,层与层之间不在以化学键存在,Ti在纳米管中的配位和八面体结构未达到饱和,拉曼光谱表明,TiO2纳米管以无定型的形态存在。Tomoko Kasuga等用10 M NaOH溶液水热条件下110 ℃处理20小时,得到具有针状结构的纳米管,晶型为锐钛矿型。可见纳米管的晶型,随着水热处理的温度和时间变化而有所不同。 TiO2纳米材料的的二级结构
在水热处理的过程中,除了生成纳米管本身的一级结构外,还存在纳米管之间的聚集,因而产生了氧化钛纳米管的二级结构。Dimitry V. Bavykin等研究发现,纳米管的二级结构取决于前驱体二氧化钛的量和所用NaOH的体积,其比例越小,生成的氧化钛纳米管越倾向聚集成球状。这可能是由于在水热条件下生成纳米管的过程是一个比较缓慢的过程,影响因素较复杂造成的。 TiO2纳米材料的改性
TiO2纳米材料的很多应用都是和其光学性质紧密相连的。但是,TiO2的带隙在一定程度上限制了TiO2纳米材料的效率。金红石型TiO2的带隙是3.0eV,锐钛矿型是3.2eV,只能吸收紫外光,而紫外光在太阳光中只占很小的一部分(
纳米材料论文篇5
纳米磁性材料在医药中的应用
姓名:周逸红 学号:6003109083 班级:水电092 摘要:磁性纳米生物材料因其独特的性能而具有广泛的应用价值, 尤其在肿瘤治疗, 细胞及生物分子的分离纯化, 临床诊断和组织工程领域, 给人类疾病的治疗带来了新的契机和希望。本文从靶向药物载体技术, 肿瘤治疗, 细胞分离技术, 免疫分析, 酶的吸附与固定作用和基因治疗几个方面简要分析磁性纳米材料在生物医学领域的应用及其发展过程中有待解决的问题。
关键词:磁性纳米材料; 生物医学; 纳米生物技术;磁性载体肿瘤应用 引言
纳米科学技术是20 世纪80 年代发展起来的一门多学科交叉融合的技术科学,其最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物学特性来制造具有特定功能的产品。
磁性纳米粒子由于具有小尺寸效应、磁导向性能、低毒性、生物相溶性、可注射性等, 越来越受到生物医学工作者的肯定和关注。近十几年来, 科学工作者对磁性纳米粒子进行各种化学的、物理的、生物的表面修饰, 制备出各种各样的不同用途的具生物活性功能基团的纳米磁粒, 极大地拓宽了纳米磁粒在医学上的应用范围。本文拟就纳米磁粒在医学研究领域的主要进展概述如下。
1磁性纳米粒子在肿瘤治疗中的应用 1.1 磁性纳米材料作为载药系统的类型
目前常见的纳米载药系统的类型【1】:1.微乳 2.生物可降解纳米粒3.脂质体4.固体脂质纳米粒5.磁性纳米粒6.基因转导纳米粒。其中磁性纳米粒是一种广泛应用于癌症治疗及诊断的磁性材料,医用磁 性纳米载体主要由铁微粒和其他活性成分构成的纳米微球【2】,其粒子本身具有生物相容性,并可在体内完全代谢。这些纳米微球具有较强的药物承载能力,抗癌 药物以及抗体、活性蛋白和小分子多肽等物质通过一定的物理吸附或化学键与其相连并配合载液形成磁靶向载体系统。
1.2 磁性纳米材料介导靶向化学药物治疗
传统化学治疗的最大弊端就是其相对非特异性,服用的治疗药物广泛分布到全身各个系统结果导致 了显著的副作用:药物不仅攻击肿瘤细胞而且也攻击正常的组织细胞【3-4】。这些副作用导致长时间服用此类药物的困难,但如果这些药物的作用位点能够被定 位,那么此类药物在人体的长期应用将变得可能。 目前认为渗漏、组织结构缺陷和淋巴系统受损是肿瘤组织快速的血管化的主要原因,但这些原因同 样是使肿瘤具有了上皮通透与重吸收特性(EPR effect)【5】,这一特点导致了磁性纳米材料在肿瘤部位的浓集。经过表面修饰使其逃避RES吞噬作用成了研究的重点,研究表明纳米材料粒径小于 100 nm并且表面被亲水性基团修饰是避免被RES清除的有效途径,有实验证明经过PEG、帕洛沙敏、环糊精修饰过的纳米粒能明显单核巨噬细胞系统(MPS)的 吞噬作用,研究表明由于这些表面修饰的存在,改变的纳米载体表面构型和电荷分布,导致调理蛋白不易附着,从而减低了MPS的吞噬作用。而与亲水基团共价交 联两性分子如聚乙酸内酯,聚乳酸等这样可以避免团聚效应与血细胞受体结合【6】。 最近 Pankhurst 等【7】首先在老鼠骨肉瘤 (osteosarcoma)部位植入一块永久磁铁 , 然后通过磁性阿霉素脂质体释放细胞毒素药物 ( cytotoxicdrugs) 治疗肿瘤 , 结果表明骨肉瘤部位的药物浓度是非磁控区药物浓度的 4 倍,而且药物的抗肿瘤活性也大大提高。
1.3 肿瘤的热疗
肿瘤热疗是肿瘤治疗技术中的一个非常重要的方法。磁粒用于肿瘤热疗(磁致热疗)治疗癌症是因 为磁粒在磁场的引导下, 可靶向病变部位, 同时在交变磁场的作用下,磁滞后效应(magnetic hysteresiseffects) 而产生热量将富有磁粒的肿瘤部位加热到43~48℃之间, 选择性杀死癌细胞同时又不伤害正常细胞。该方面有所进展的例子是A.Jordan 博士领导的研究团队发现用糖衣包裹氧化铁粒子伪装后, 可以成功逃过人体免疫细胞的攻击而安然进入肿瘤组织内, 加上交换磁场, 在维持治疗部位45~47℃的温度下, 氧化铁粒子便可杀死肿瘤细胞, 临近的健康组织却不受到明显影响。Kouji Tanaka[1]结合细胞免疫技术采用磁性阳离子脂质体对小鼠的瘤灶进行热疗, 能使小鼠75%的瘤块消退。ManfredJohannsen 等[2]把磁流体热疗与放疗结合起来对移植性前列腺癌的哥本哈根Copenhagen 老鼠模型进行实验, 发现在第一个疗程, 热疗温度可达到42.7℃~58.7℃两个疗程后, 与对照组比较, 抑制肿瘤增生87.5%~89.2%。颜士岩等【8】采用Fe2O3 纳米磁流体对荷瘤鼠热疗, 实验显示纳米磁流体【9】热疗对肝癌的体积和质量有明显的抑制作用。
1.4肿瘤的基因治疗
近年来, 肿瘤基因治疗因其具有特异性、安全性、有效性的特点而受到越来越多的关注, 而且许多临床研究取得了满意的效果。建立有效靶向细胞转移目的基因的载体系统是基因治疗研究必不可少的一个重要方面。目前临床试验中所用的载体一般有两 类: 病毒载体和非病毒载体。非病毒载体较病毒载体更为安全而成为较佳的选择。肿瘤基因治疗中用到的非病毒载体主要分为: 脂质体/脂质复合物、阳离子多聚物、磁性纳米粒子等。Norio Morishita[8]报道把经表面修饰的磁性纳米粒与日本血凝病毒壳蛋白( hemagglutinating virus of Japanenvelope, HVJ-E) 结合, 可提高其转染质粒DNA, 蛋白质、核苷酸入细胞的转染效率。向娟娟等[9]探讨了氧化铁纳米颗粒(IONP)作为体外基因载体的可行性及其外加磁场对于其转染效率的影响。IONP 可将外源基因转染至多个细胞系并高效表达。不同细胞系的转染效率和时间各不相同。外加磁场可使转染效率提高5~10 倍。 1.5 肿瘤的化疗
肿瘤化疗也是肿瘤治疗技术中的一个重要方面。但因大数多肿瘤药物具有很大的毒副作用, 且存在明显的疗效一剂量依赖关系。因此, 为提高局部的药物浓度, 减少全身毒性反应, 人们开始考虑磁靶向给药途径。摄载药物的磁纳米载体在外加磁场的作用下定向于特定部位, 再把药物释放出来。这就改变了药物在肿瘤组织与非肿瘤组织的分布, 使体内蓄积毒性降低, 使治疗部位的药物浓度明显提高, 更大的发挥化疗药物杀伤癌细胞的作用。ChristophAlexioud 等【10】通过实验发现米托蒽醌磁性纳米粒子靶向到兔子体内的病变部位后, 所释 放的药物分子浓度远远大于常规治疗方案的药物浓度。龚连生等【11】把磁性阿霉素白蛋白纳米粒注射入移植性肝癌模型的大鼠肝动脉, 并在肝肿瘤区外加磁场,实验结果显示大片肿瘤组织坏死, 说明磁性阿霉素白蛋白纳米粒具有强大的抗肿瘤作用。
2、 细胞分离和免疫分析
细胞分离是生物细胞学研究中一种十分重要的技术,高效的细胞分离在临床中是首要的、重要的步 骤。这种细胞分离技术在医疗临床诊断上有广范的应用, 例如治疗癌症需在辐射治疗前将骨髓抽出, 且要将癌细胞从骨髓液中分离出来。传统的细胞分离技术主要采用离心法,利用密度梯度原理进行分离,时间长、效果差。随着合成磁性粒子的发展, 免疫磁性粒子在分离细胞方面已经获得了快速的发展经动物临床试验已获成功。其中最重要的是选择一种生物活性剂或者其他配体活性物质(如抗体、荧光物质、外 源凝结素等) ,根据细胞表面糖链的差异,使其仅对特定细胞有亲和力,从而达到分离、分类以及对其种类、数量分布进行研究的目的。磁性粒子用于细胞分离需要考虑以下几个 因素: 不与非特定细胞结合、具有灵敏的磁响应性、在细胞分离介质中不凝结。
免疫分析在现代生物分析技术中是一种重要的方法,它对蛋白质、抗原、抗体及细胞的定量分析发 挥着巨大的作用。在免疫检测中,经常利用一些具有特殊物理化学性质的标记物如放射性同位素、酶、胶体金和有机荧光染料分子等对抗体(或抗原)进行偶联标 记,在抗体与抗原识别后, 通过对标记物的定性和定量检测而达到对抗原(或抗体) 检测的目的。由于磁性纳米颗粒性能稳定,较易制备, 可与多种分子复合使粒子表面功能化, 如果磁性颗粒表面引接具有生物活性的专一性抗体, 在外加磁场的作用下,利用抗体和细胞的特异性结合,就可以得到免疫磁性颗粒, 利用它们可快速有效地将细胞分离或进行免疫分析,具有特异性高、分离快、重现性好等特点, 同时磁性纳米颗粒具有超顺磁性,为样品的分离、富集和提纯提供了很大方便, 因而磁性纳米颗粒在细胞分离和免疫检测方面受到了广泛关注。 磁性纳米颗粒对蛋白酶的吸附及固定化
生物高分子例如酶等都具有很多官能团, 可以通过物理吸附、交联、共价偶合等方式将他们固定在磁性颗粒的表面。用磁性纳米颗粒固定化酶的优点是:易于将酶与底物和产物分离;可提高酶的生物相容性和免疫活性;能提高酶的稳定性,且操作简单、成本较低。
制备吸附蛋白酶的磁性高分子颗粒的过程可以概括为:制备磁流体, 在对磁流体中的磁性纳米颗粒用大分子包覆或联结, 所形成的磁性高分子载体可用作亲和吸附的磁性亲和载体。作为酶的固定化载体,磁性高分子颗粒有利于固定化酶从反应体系中分离和回收, 还可以利用外部磁场控制磁性材料固定化酶的运动和方向, 从而代替传统的机械搅拌方式, 提高固定化酶的催化效率。磁性高分子颗粒作为酶的固定化载体还具有以下优点:固定化酶可重复使用,降低成本;可以提高酶的稳定性,改善酶的生物相容性、免 疫活性、亲疏水性;分离及回收酶的操作简单,适合大规模连续化操作。 结束语
Bosher 认为RNAi 将是未来十年生物学研究中最激动人心最有可能产生丰富成果的领域之一。尤其是对细胞中基因功能的分析和基因特异性的治疗方面的突出优势, 在未来的发展中将具有更加广阔的发展前景。由于能够快速而简单地制备某个功能缺失表型, 使得更多的研究人员投身于RNAi 的研究之中。尽管目前对这项功能强大的技术已经有深入的了解, 但是几乎每天都有新的结果不断涌现, 可以毫不夸张地说, RNAi 正在功能基因组学领域掀起一场真正的革命。 磁性纳米材料在生物医学领域已表现出独特的优势,具有潜在的应用前景。随着高分子材料学、电磁学、医学、生物工程学的进一步发展,必将加速推动对磁性纳米材料的基础研究和在生物医学领域应用研究工作, 使之进入一个新的发展阶段。
参考文献:
【1】 Q A Pankhurst, J Connolly, S K Jones and J Dobson,Applications ofmagnetic nanoparticles in biomedicine J. Phys. D: Appl. Phys. 36 (2003)R167–R181 【2】 常兰等, “核壳型磁性高分子微球的制备及应用进展(综述)”, 暨南大学学报(自然科学版)[J], Vol( 25) , 06/2005 【3】 Duncan R. 2003. The dawning era of polymer therapeutics. Nat. Rev. DrugDiscov. 2:347–60. 【4】 Park EK, Lee SB, Lee YM. 2005. Preparation and characterization of methoxy polethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymericnanospheres for tumor-specific folate-mediated targeting of anticancerdrugs. Biomaterials 26:1053–61 【5】刘新权, 景猛, 等。 磁性纳米材料的研究现状及其在神经干细胞移 植中的应用[ J] 。 实用临床医药杂志, 2003, 7 ( 3) : 232. 【6】 Ringsdorf H. 1975. Structure and properties of pharmacologically active olymers. J. Polym. Sci. Polym. Symp. 51:135–53 【7 】Q A Pankhurst, J Connolly, S K Jones, etal 。Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003,36:167–181 【8 】Marx J.Science,2000,288(5470):1370~1372. 【9】 赵强等“, 磁性纳米生物材料研究进展及其应用”,原子与分子物理学报[J], Vol( 22) , 04/2005 【10】 Christoph A, Roland J, Roswitha S, et al. JMagnMagn Mater, 2005, 293( 1) : 389~393. 【11】 龚连生, 张阳德, 等。中国现代医学杂志, 2001, 11( 3) : 14~16.
纳米材料论文篇6
课程论文
学生姓名:
王园园
学号:20130540
学院:材料科学与工程学院
专业年级:材料化学2013级
题目:纳米陶瓷的研究现状及发展趋势
指导教师:李万千老师
评阅教师:
2015年5月
1
目录
摘要 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 3 Abstract 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 错误!未定义书签。 1. 前言 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 错误!未定义书签。 2. 纳米陶瓷的概念及其发展 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 5 3. 纳米陶瓷的制备 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 7 3.1纳米陶瓷粉体的物理法制备 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 7 3.2纳米陶瓷粉体的化学法制备 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 8 4. 纳米陶瓷粉体的表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 10 4.1化学成分表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 10 4.2晶态表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 11 4.3颗粒度表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 11 4.4团聚体表征 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 12 5. 纳米陶瓷的性能 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 12
5.1纳米陶瓷的致密化 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 12 5.2纳米陶瓷的力学性能 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。 13 6. 纳米陶瓷的应用及其展望 。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。. 13 7. 参考文献……………………………………………………… 12 摘要
20世纪80年代中期发展起来的纳米陶瓷,对陶瓷材料的性能产生了重要的影响,为陶瓷材料的利用开拓了一个新的领域,已成为材料科学研究的热点之一。综述了纳米陶瓷材料近年来的发展与应用,重点论述了纳米陶瓷的制备、性能及应用现状,并对纳米陶瓷的未来发展进行了展望。
3 Abstract Nanometer ceramics which are developed in the mid-eighties of the twentieth century have an important affect on the properties of ceramic materials. They have formed promising fields for the utilization of materials which has been one of the most popular fields of material research. The preparation and characterization of nanometer ceramic powders and the properties and application of nanometer ceramics are summarized. The future developments of nanometer ceramics were discussed.
4 1. 前言
纳米陶瓷是一类颗粒直径界于1到100nm之间的多晶体烧结体。每个单晶颗粒的直径非常小,例如,当单晶颗粒直径为5nm时,材料中的界面的体积约为总体积的50%,特就是说,组成材料的原子有一半左右分布在界面上,这样就减少了材料内部晶体和晶界的性质差异,使得纳米陶瓷具有许多特殊的性质[1]。纳米功能陶瓷是指通过有效的分散复合而使异质相纳米颗粒均匀弥散地保留于陶瓷基质结构中而得到的复合材料,当其具有某种特殊功能时便称之为纳米功能陶瓷。纳米功能陶瓷的性能是和其特殊的微观结构相对应的,它的性能不仅取决于纳米材料本身的特性,还取决于纳米材料的物质结构和显微结构[2]。
纳米陶瓷是纳米科学技术的重要分支,是纳米材料科学的一个重要领域。纳米陶瓷的研究是当前陶瓷材料发展的重大课题之一。陶瓷是一种多晶体材料,是由晶粒和晶界所组成的烧结体,由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷材料性能的主要因素有:组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对陶瓷材料的力学性能产生重大影响。图1是陶瓷晶粒尺寸强度的关系图。
5
图1中的实线部分是现在已经达到的,而延伸的虚线部分是希望达到的。从图1中可见,晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时由于晶界数量的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减少到最低程度;其次晶粒的细化使材料不易造成穿晶断裂,有利于提高材料的断裂韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为。纳米材料的问世将使材料的强度、韧性和超塑性大大提高。纳米陶瓷由于是介于宏观和微观原子、分子的中间研究领域,它的出现开拓了人们认识物质世界的新层次,将给传统陶瓷工艺、性能及陶瓷学的研究带来更多更新的科学内涵。
2、 纳米陶瓷的概念及其发展
所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材
6 料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。陶瓷材料的脆性大、不耐热冲击、不均匀、强度差、可靠性低、加工困难等缺点大大地限制了陶瓷的应用。随着纳米技术的广泛应用,希望以纳米技术来克服陶瓷材料的这些缺点,如降低陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。因此纳米陶瓷被认为是解决陶瓷脆性的战略途径[3]。同时,纳米陶瓷也为改善陶瓷材料的烧结性和可加工性提供了一条崭新的途径。
正是由于纳米科学和陶瓷工艺学的发展与完善,使纳米陶瓷概念的提出有了理论基础。再加之研究手段和设备的进步,比如电子显微镜,透射电子显微镜以及高分辨电镜和分析电镜等现代表征技术的发展,使纳米陶瓷的研究、分析成为可能。另外由于纳米材料的特殊性能,其与陶瓷材料结合不仅可以提高陶瓷本身一些重要的性能,而且也克服了陶瓷的缺点——脆性、热冲低等,使纳米陶瓷有了发展的空间与必要。在这种情况下,科研工作者在20世纪80年代中期开始了纳米陶瓷的研究,并且逐步取得了一些重要得成果。1987年,德国的Karch等首次报道了所研制得纳米陶瓷具有高韧性与低温超塑性行为。目前,各国都相继加大了对纳米陶瓷研究的力度,以便能使传统的性能优良的陶瓷材料与新兴的纳米科技结合,从而产生“1+1>2”的效果,使纳米陶瓷具有更高的特殊的使用性能,将其应用到工业生产、国防保护等领域必然会取得巨大的经济效益。虽然纳米陶瓷的研究时间还不长,许多理论尚未清楚,但经过各国工作者的辛勤努力,在纳米陶瓷研究方面还有许多成果,无论是对纳米陶瓷的制备工艺还是性能都有
7 很大的提高。例如,美国的“Morton International"s Advanced Materials Group”公司开发了一条生产SiC陶瓷的革命性工艺——CVD原位一步合成纳米陶瓷工艺。我国的科研工作者对该工艺进行了研究,也取得了一些成果[4]。
3、 纳米陶瓷的制备
3.1纳米陶瓷粉体的物理法制备
目前物理方法制备清洁界面的纳米粉体及固体的主要方法之一是惰性气体冷凝法[5]。制备过程为:在真空蒸发室内充入低压惰性气体,加热金属或化合物蒸发源,由此产生的原子雾与惰性气体原子碰撞而失去能量,凝聚而成纳米尺寸的团簇并,在液氮冷却棒上聚集起来,最后得到纳米粉体。其优点是可在体系中加置原位压实装置,即可直接得到纳米陶瓷材料。1987年美国Argonne实验室的Siegles采用此方法成功地制备了TiO2纳米陶瓷粉体,粉体粒径为5~20nm。此方法的缺点是装备巨大,设备投资昂贵不,能制备高熔点的氮化物和碳化物粉体,所得粉体粒径分布范围宽[5,6]。
还有一种方法叫高能机械球磨法,就是通过无外部热能供给,干的高球磨过程制备纳米粉体。它除了可用来制备单质金属纳米粉体外,还可通过颗粒间的固相反应直接合成化合物粉体,如金属碳化物、氟化物、氮化物、金属-氧化物复合粉体等。近年来通过对高能机械球磨过程中的气氛控制和外部磁场的引入,使得这一技术有了进一步发
8 展。该方法操作简单、成本低。中科院上海硅酸盐研究所的姜继森等报导了在高性能球磨的作用下,通过α-Fe2O3和ZnO及NiO粉体之间的机械化学反应合成Ni-Zn铁氧体纳米晶的结果[7]。此外还有机械粉碎、火花爆炸等其它物理制备方法。
3.2纳米陶瓷粉体的化学法制备
湿化学法制备工艺主要适用于纳米氧化物粉体,它主要通过液相来合成粉体。这种方法具有苛刻的物理条件、易中试放大、产物组分含量可精确控制,可实现分子/原子尺度水平上的混合等特点,可制得粒度分布窄、形貌规整的粉体。但采用液相法合成的粉体可能形成严重的团聚,直接从液相合成的粉体的化学组成和相组成往往不同于设计要求,因此需要采取一定形式的后处理。
它包括沉淀法。该法是在金属盐溶液中加入适当的沉淀剂来得到陶瓷前驱体沉淀物,再将此沉淀物煅烧成纳米陶瓷粉体。根据沉淀的方式可分为直接沉淀法、共沉淀法和均匀沉淀法。为了避免沉淀法制备粉体过程中形成严重的硬团聚,往往在其过程中引入冷冻干燥、超临界干燥、共沸蒸馏等技术手段,取得了较好的效果。沉淀法操作简单,成本低,但易引进杂质,难以制得粒径小的纳米粉体。上海硅酸盐研究所以共沉淀-共沸蒸馏法制得了纳米氧化锆粉体,试验中的共沸蒸馏技术有效地防止了硬团聚的形成,制得的氧化锆粉体具有很高的烧结活性[8]。
溶胶-凝胶法。该法是指在水溶液中加入有机配体与金属离子形
9 成配合物,通过控制pH值、反应温度等条件让其水解、聚合,历经溶胶-凝胶途径而形成一种空间骨架结构,经过脱水焙烧得到目的产物的一种方法。溶胶-凝胶工艺被广泛应用于制备均匀高活性超细粉体,起始材料通常都是金属醇盐。图2为溶胶-凝胶法的制备流程图。
图2 溶胶-凝胶法制备流程
图2中用金属醇盐溶胶-凝胶制备PZT系列超微粉[9]。也有不用醇盐的,哈尔滨工业大学以硝酸氧锆代替锆的醇盐用溶胶-凝胶法同样合成了PZT纳米粉[10]。另外,以廉价的无机盐为原料,采用溶胶-凝胶法结合超临界流体干燥制备了纳米级的TiO2[11]。
喷雾热解法。该法是将金属盐溶液以雾状喷入高温气氛中,此时立即引起溶剂的蒸发和金属盐的热分解,随后因过饱和而析出固相,从而直接得到氧化物纳米陶瓷粉体,或者是将溶液喷入高温气氛中干燥,然后再进行热处理形成粉体。形成的颗粒大小与喷雾工况参数有很大的关系。采用此方法制得的颗粒,通常情况下是空心的。通过仔
10 细选择前驱物种类、溶液的浓度及加热速度,也可制得实心颗粒。水热法。该法是指在密闭的压力窗口容器中,以水为溶剂制备材料的一种方法。近十几年来在陶瓷粉体制备方面取得了相当好的成果[12]。同时,水热法陶瓷粉体制备技术也有了新的改进和发展。如将微波技术引入水热制备系统的微波水热法。反应电极埋弧也是水热法制备纳米陶瓷粉体的新技术,这种方法是将两块金属电极浸入到能与金属反应的电解质流体中,电解质一般采用去离子水,借助低电压、大电流在电极间产生电火花提供局部区域内短暂的、极高的温度和压力,导致电级和周围电解质流体的蒸发,并沉淀在周围的电解质溶液中。此外,用有机溶剂代替水作为反应介质的溶剂热反应,在陶瓷粉体制备中也表现出良好的前景。
此外,还有化学气相法,它又包括化学气相沉积法(CVD),激光诱导气相沉积法(LICVD),等离子体气相合成法(PCVD法)等方法,在此不一一介绍。
4、 纳米陶瓷粉体的表征
4.1化学成分表征
化学组成是决定粉体及其制品性质的最基本因素,除了主要成分外,次要成分、添加剂、杂质等对其烧结及制品性能往往也有很大关系,因而对粉体化学组成的种类、含量,特别是微量添加剂、杂质的含量级别及分布进行检测,是十分重要和必要的。化学组成的表征方
11 法有许多种,主要可分为化学反应分析法和仪器分析法。化学分析法具有足够的准确性和可靠性。对于化学稳定性好的粉体材料来说,经典化学分析方法则受到限制。相比之下,仪器分析则显示出独特的优越性。如采用X射线荧光(XPFS)和电子探针微区分析法(EPMA) ,可对粉体的整体及微区的化学成分进行测试,而且还可与扫描电子光谱(AES)、原子发射光谱(AAS)结合对粉体的化学成分进行定性及定量分析;采用X光电子能谱法(XPS)分析粉体的化学组成并分析结构、原子价态等与化学键有关的性质[13]。
4.2晶态表征
X射线衍射(XRD)仍是目前应用最广、最为成熟的一种粉体晶态的测试方法。此外,电子衍射(ED)法还可用于粉体物相、粉体中个别颗粒直至颗粒中某一区域的结构分析;用高分辨率电子显微分析(HREM)、扫描隧道显微镜(STM)分析粉体的空间结构和表面微观结构。
4.3颗粒度表征
在纳米陶瓷粉体颗粒度测试中,透射电子显微镜是最常用、最直观的手段。但是,如粉体颗粒不规则或选区受到局限等,均会给测量造成较大的误差。常见的粉体颗粒测试手段还有X射线离心沉降法(测量范围为0.01~5μm)、气体吸附法(测量范围0.01~10μm)、X射线小角度散射法(测量范围为0.001~0.2μm)、激光光散射法(测量范围0.002~2μm)等[14]。
12 4.4团聚体表征
团聚体的性质可分为团聚体的尺寸、形状、分布、含量,气孔率、气孔尺寸及分布,密度,内部显微结构,强度,团聚体内一次颗粒之间的键和性质等。目前常用的团聚体表征方法主要有显微结构观察法、素坯密度-压力法以及压汞法等。
5、 纳米陶瓷的性能
5.1纳米陶瓷的致密化
超细粉末的应用引起了烧结过程中的新问题,纳米粉末的巨大表面积,使得材料的烧结驱动力亦随之剧增,扩散速率的增加以及扩散路径的缩短,大大加速了整个烧结过程,使得烧结温度大幅度降低。例如:1nm的纳米颗粒与1μm的微米级颗粒相比,其致密化速率将提高108。目前,上海硅酸盐研究所通过对含Y2O3(3mol%)ZrO2纳米粉末的致密化和晶粒生长这两个高温动力学过程的研究发现:对颗粒大小为10~15nm的细粉末,其烧结温度仅需1200~1250℃,密度达理论密度的98.5%,比传统的烧结温度降低近400℃。进一步的研究表明:由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长。控制烧结的条件,已能获得晶粒分布均匀,大小为120nm的Y-TZP陶瓷体。
用激光法所制的15~25nm Si3N4粉末比一般陶瓷烧结温度降低了200~300℃,所得晶粒大小为150nm Si3N4陶瓷,其弯曲变形为微
13 米级陶瓷的2倍[15]。
5.2纳米陶瓷的力学性能
大量研究表明,纳米陶瓷材料具有超塑性性能,所谓超塑性是指材料在一定的应变速率下产生较大的拉伸应变。纳米TiO2陶瓷在室温下就能发生塑性形变,在180℃下塑性变形可达100%。若试样中存在微裂纹,在180℃下进行弯曲时,也不会发生裂纹扩展[16]。对晶粒尺寸为350nm的3Y-TZD陶瓷进行循环拉伸试验发现,在室温下就已出现形变现象。纳米Si3N4陶瓷在1300℃下即可产生200%以上的形变。关于纳米陶瓷生产超塑性的原因,一般认为是扩散蠕变引起晶界滑移所致。扩散蠕变速率与扩散系数成正比,与晶粒尺寸的三次方成反比,当纳米粒子尺寸减小时,扩散系数非常高,从而造成扩散蠕变异常。因此在较低温度下,因材料具有很高的扩散蠕变速率,当受到外力后能迅速作出反应,造成晶界方向的平移,从而表现出超塑性,塑性的提高也使其韧性大为提高。纳米陶瓷的硬度和强度也明显高于普通材料。在陶瓷基体中引入纳米分散相进行复合,对材料的断裂强度、断裂韧性会有大幅度的提高,还能提高材料的硬度、弹性模量、抗热震性以及耐高温性能。
6、 纳米陶瓷的应用及其展望
纳米陶瓷在力学、化学、光吸收、磁性、烧结等方面具有很多优异的性能,因此,在今后的新材料与新技术方面将会起到重要的作用。
14 随着纳米陶瓷制备技术的提高和精密技术对粉体微细化的要求,纳米陶瓷将在许多领域得到应用(如纳米陶瓷在结构陶瓷、功能陶瓷、电子陶瓷、生物陶瓷等领域)。不过从目前的研究来看,纳米陶瓷获得应用的性能有以下几个方面: 1)室温超塑性是纳米陶瓷最具应用前景的性能之一。纳米陶瓷克服了普通陶瓷的脆性,使陶瓷的锻造、积压、拉拔等加工工艺成为可能,从而能够制得各种特殊的部件,应用到精密设备中去。
2)高韧性是纳米陶瓷另一个具有很高应用的性能。陶瓷韧性的提高使得陶瓷的应用领域极度的扩大,因为今后纳米陶瓷就可以像钢铁、塑料等主流材料一样的应用,而不是人们心目中的“易碎品”。
3)纳米陶瓷的应用还可以节约能源、减少环境污染(传统的陶瓷工业能耗高、污染重)。纳米陶瓷的烧结温度比普通陶瓷的低几百度,而且还可能继续下降,这样不仅可节省大量能源,还有利于环境的净化。
7、 参考文献
[1] 谢少艾,陈虹锦,舒谋海编著。元素化学简明教程。上海交通大学出版社。2006年,(11.5.3)纳米陶瓷
[2]林志伟。功能陶瓷材料研究进展综述。广东科技,2010,7(241):36 [3] Cahn R W.Nanomaterials coming of age.Nature,1988,332(60~61):112~115 [4] 杨修春,丁子上。原位一步合成纳米陶瓷新工艺。材料 导报,1995(3):48~49 [5] 严东生。纳米材料的合成与制备。无机材料学报,1995,10(1):1
[6] Yoshimura.Rapid rate sintering of nano-grained ZrO2-based composites using pulse electric current sintering method. J Mater Sci Lett,1998,19:1389 [7] 姜继森,高濂,郭景坤。 Ni-Zn铁氧体纳米晶的机械化学合成。无机材料学报,1998,13(3):415 [8] 仇海波,等。纳米氧化锆粉体的共沸蒸馏法制备及研究。无机化学学报,1994,9(3):365 [9] 王秉济,马桂英。溶胶-凝胶法合成PLZT微细粉末。硅酸盐学报,1994,22(1):57 [10]刘大格,蔡伟,等。以硝酸氧锆为锆源溶胶-凝胶合成PZT纳米晶的研究。硅酸盐学
15 报,1998,26(3):313 [11] 张敬畅,等。超临界流体干燥法制备纳米级TiO2的研究。无机材料学报,1999,14(1):29 [12] 施尔畏,夏长泰,王步国,等。水热法的应用与进展。无机材料学报,1996,11(2):193 [13] 施剑林。低比表面积高烧结活性氧化锆粉体的制作方法。科技开发动态,2005,4:41 [14] 戴春雷,杨金龙。凝胶注模成型延迟固化研究。无机材料学报,2005,20(1):83 [15] 刘永胜,等。 CVI制备C/Si3N4复合材料及其表征。无机材料学报,2005,20(5):1208 [16] 梁忠友。纳米材料性能及应用展望。陶瓷研究,1999,14(1):13
16
纳米材料论文篇7
摘 要
纳米材料由于其自身特有的物理效应和化学性质,在不同领域具有广泛的应用性,因此被誉为“21世纪最有前途的材料”。纳米材料的应用前景十分广阔,它的发展给物理、化学、材料、生物、医药等学科的研究带来了新的机遇。
通过对纳米材料及制备技术课程的学习,本文综述了对纳米材料的认识,以及其特性、分类、制备方法和其应用领域。 关键词:纳米材料;分类;特性;制备;应用 前言
1.1 纳米及纳米材料
纳米,实际上是一个长度计量单位,1 nm = 10-9 m,即一米的十亿分之一。正是这神奇的十亿分之一米,向我们开启了一个崭新的微观物质世界。当物质到纳米尺度以后,大约是在1~100nm这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是 21 世纪的三大科技之一。
1.2 纳米材料的发展简介
近年来,世界各国对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列入高科技开发项目。2005纳米科技研发预算已达到10亿美元,而且在美国该预算的优先选择领域中,纳米材料名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一。世界发达国家均对纳米产业进行战略性布局,并纷纷投入巨资。
我国的纳米材料研究起步比较晚,始于20世纪80年代末,但在“八五”期间已将纳米材料科学列入国家攀登项目。之后在基础研究和应用研究方面,我国在纳米技术研究方面也投入了大量的人力和物力。在《新材料产业“十二五”发展规划》中,纳米材料被列入6大发展重点之一的“前沿新材料”中。在国家各项科技计划的支持下,我国纳米材料及纳米科学技术也取得了比较突出的成果。 纳米材料的分类
在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数,纳米材料的基本单元可以分为3类:① 0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等;③ 2维,指在3维空间中有1维在纳米尺寸,如超薄膜,多层膜,超晶格等。按化学组成可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料。按材料物性可分为:纳米半导体,纳米磁性材料,纳米非线性光学材料,纳米铁电体,纳米超导材料,纳米热电材料等。按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,纳米储能材料等。 纳米材料的特性
纳米材料具有尺寸小,表面积大,表面能高,表面原子比例大的四大特点,并且具有小尺寸效应,量子尺寸效应,宏观量子隧道效应,表面效应四大效应。纳米材料的特性主要取决于制备方法。
3.1 表面效应
球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积与直径成反比,随着颗粒直径的变小比表面积将会显著地增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很高的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。这种表面原子的活性不但引起纳米粒子表面原子输运和构型变化,同时也引起表面电子自旋构像和电子能谱的变化。
3.2 小尺寸效应
随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质:① 特殊的光学性质;② 特殊的热血性质;③ 特殊的磁学性质;④ 特殊的力学性质。超微颗粒的小尺寸效应还表现在超导电性,介电性,能声学特性以及化学性能等方面。
3.3 量子尺寸效应
微粒尺寸下降到一定值时,费米能级附近的电子能级由准连续能级变为分立能级,吸收光谱阙值向短波方向移动,这种现象称为量子尺寸效应。量子尺寸效应产生最直接的影响就是纳米晶体吸收光谱的边界蓝移。这是由于在纳米尺度半导体微晶中,光照产生的电子和空穴不再是自由的。存在库仑作用,此电子空穴对类似于大晶体中的激子。由于空间的强烈束缚导致激子吸收峰蓝移,带边以及导带中更高激发态均相应蓝移。
3.4 宏观量子隧道效应
隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量如微颗粒的磁化强度,量子相干器件中的磁通量及电荷也具有隧道效应,它们可以穿越宏观系统的势阱而产生变化,故称之为宏观量子隧道效应。
纳米材料的物理性质和化学性质既不同于宏观物体,也不同于微观的原子和分子。当组成材料的尺寸达到纳米量级时,纳米材料表现出的性质与体材料有很大的不同。在纳米尺度范围内原子及分子的相互作用,强烈地影响物质的宏观性
质。物质的机械、电学、光学等性质的改变,出现了构筑它们的基石达到纳米尺度。纳米材料之所以能具备独到的特性,是因为组成物质中的某一相的某一维的尺度缩小至纳米级,物质的物理性能将出现根本不是它的组分所能比拟的改变。 纳米材料的制备
纳米材料的制备主要有物理合成法和化学合成法,合成过程中将材料进行纳米结构化,主要包括以下几个方面。
常见的物理合成方法有喷雾法、喷雾干燥法、喷雾热解法、冷冻—干燥法、 反应性球磨法、气流粉碎技术等。其中气流粉碎技术具有比较多的优点,它是采用高速的超音速气流来加速固体物料,使物料互相撞击或与靶撞击使物料粉碎,气流粉碎技术加工效率较高,尤其是对超硬的材料更能体现出该方法的优点,比较先进的气流粉碎设备,可以使物料在粉碎时不接触其它物质,因而可以减小对粉料的污染。
化学合成法主要有等离子体制备纳米粉末技术化学气相沉淀法、共沉淀法、均匀沉淀法、溶剂热合成法、溶胶—凝胶法、水热法制备纳米粉末技术、微乳化技术等合成方法。其中化学气相沉淀法形成的纳米材料较细,较均一,化学气相沉淀法的原理是将一种或数种反应气体通过热、激光等离子体等而发生化学反 应,析出超微粉的纳米材料制备方法。由于存在于气相中的粒子成核及生长的空间比较大,因此,该方法制得的粒子分散度较好,同时,又因为反应是在封闭容器中进行,使得化学气相沉淀法形成的纳米粒子具有比较高的纯度。 纳米材料的应用
纳米材料具有常规材料所不具备的物理特性,即具有高度的弥散性和大界面,使纳米材料具有高扩散率,蠕变和超塑性。为原子提供了短程扩散途径,使有限固溶体的固溶性增强,烧结温度降低,从而其化学活性增大。因此纳米材料的力、 热、声、光、电磁等性质不同于该物质在粗晶状态时所表现出的性质。纳米材料的高强度、高扩散性、高塑性、低密度、高电阻、高比热、强软磁性等特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特 殊导体、热交换材料、敏感元件、润滑剂等领域。以下综述了纳米材料在几个领域的应用。
5.1碳纳米管的应用
纳米碳管在电学、力学、热学等方面具有特殊的性质,因此具有很好的应用前景。
纳米碳管的电学性质及应用,碳纳米管电极具有较大的电极表面积和较高的电子传递速率,因此可增大电流响应,使得碳纳米管电化学分析性能更为优异。另外在碳纳米管内,电子的量子限域所致电子只能在石墨片中沿着碳纳米管的轴向运动,电子是沿着石墨片层的单个平面进行传导的,其电子传输通道随碳管直径的增加而增加,因此,纳米碳管具有独特的发射传导性质。改变纳米碳管格子的母体结构也可引起纳米碳管导电性的变化,因此碳纳米管的电学性能很独特,它同时具有金属性和半导体性,所以纳米碳管适宜于制备纳米电子原件。
力学性质及应用,C—C共价键使纳米碳管具有很高的强度和刚度。纳米碳管的弹性模量和相应的刚度值近似于或大于石墨的内平面值,同时纳米碳管还具备与其它碳物质不同的力学性质,比如轴向上的高弹性和径向上高塑性,这些特 性可使纳米碳管承受40%的拉伸变形而不会断裂。纳米碳管在受到压力影响时能产生流动性导致直径发生变化,其螺旋度也会随之改变,从而影响其电子特征。 利用纳米碳管的这种特性可用来制造探测机械压力的纳米传感器。
热学性质及应用,纳米碳管的热传导率体现的是石墨的内平面特性,故而它的热传导率非常高仅次于一定形式的掺杂金刚石。纳米碳管同时具有很高的长径比,此特点可以用来改善分散不连续的纤维复合物的热传导率。纳米碳管优异的 导热性能可使其发展为今后计算机芯片的导热板,也可用作发动机、火箭等各种高温部件的防护材料。纳米碳管具有高热稳定性,同时兼具高耐磨性和耐腐蚀性,可以用其制造刀具和磨具。
另外,纳米碳管还具很多其它性能,例如它的储氢特性,纳米碳管表面存在的羟基能够和某些阳离子键合,从而达到表观上对金属离子或有机物产生吸附 作用。纳米碳管粒子具有大的比表面积,也是纳米碳管具备吸附作用的重要原因。 纳米碳管还具有吸波特性,用纳米碳管做成的物体对微波雷达有好的隐身性能。
5.2 在催化方面的应用
用作高效催化剂是纳米颗粒材料的重要应用领域之一,纳米颗粒具有很高的比表面积,表面的键态和电子态与颗粒内部不同,表面原子配位不全等特点,导致表面的活性位置增加,使得纳米颗粒具备了作为催化剂的先决条件。有人预计纳米颗粒催化剂将成为本世纪催化剂的主角。光催化剂是一种具有应用潜力的特殊催化剂,纳米TiO2所具有的量子尺寸效应使其导电和介电能级变成分立的能级,能隙变宽,导电电位变得负移,而介电电位变得正移,这使其获得了更强的氧化还原能力。
5.3 在电池中的应用
纳米材料已广泛应用到化学电源中的活性材料中,并推动着电池科技发展,纳米活性材料所具有的比表面大,锂离子嵌入脱出深度小,行程短的特性,使电
极在大电流下充放电极化程度小,可逆容量高,循环寿命长;纳米材料的高空隙率为有机溶剂分子的迁移提供了自由空间,使有机溶剂具有良好的相容性,同时,也给锂离子的嵌入脱出提供了大量的空间。作为电极的活性材料纳米化后,它表面增大,致使它极化减小,而电容量增大。由此产生较强大的电化学活性特别是纳米碳管在作为新型贮锂材料、电化学贮能材料和高性能复合材料等方面的研究已取得了重大突破另外,由于纳米材料的研究目前大多处于实验室阶段,因此如何制得粒径可控的纳米颗粒,解决这些颗粒在贮存和运输过程中的团聚问题,简化合成方法,降低成本等,依然是以后还需要研究的重要问题。 总结
材料的结构决定材料的性质。纳米材料的特殊结构决定了纳米材料具有一系列的特性(如小尺寸效应、量子尺寸效应和宏观量子隧道效应等),因而出现常规材料所没有的一些特别性能, 从而使纳米材料获得和正在获得广泛的应用。通过纳米技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,已成为经济新增长点的发展基础。随着其制备和改性技术不断发展,纳米材料将在诸多领域得到日益广泛的应用。 5
参考文献
[1] 朱世东, 周根树。 纳米材料国内外研究进展。 热处理技术与装备,2010,31(3): 1~5 [2] 林晨。 纳米材料在化工行业中的应用。 化学工程与装备,2010, 17 : 120~121. [3] 周裁民, 杨雄波, 许瑞珍。 纳米材料的研究现状及发展趋势。 科技信息,2008, (17): 17~18 [4] 袁哲俊。 纳米科学与技术。 哈尔滨工业大学出版社, 2005. [5] 张莉莉, 蒋惠亮, 陈明清。 纳米技术与纳米材料。 日用化学工业, 2004,34(2): 123~126. [6] 李凤生。 超细粉体技术。国防工业出版社, 2000. [7] 李淑娥, 唐润清, 李汉忠。 纳米材料的分类及其物理性能。 济宁师范专科学校
学报,2007,28(3) 10~11. [8] 李嘉, 尹衍升。 纳米材料的分类及基本结构效应。 现代技术陶瓷,2003,96(2) 26~30.
[9] 卫英慧, 胡兰青, 许并社。 纳米材料和技术应用进展。 机械管理开发,2002,66(2): 26~27. [10] 杨剑, 滕凤思。 纳米材料综述。 材料导报,1997,11(2): 6~10. [11] 杜仕国, 施冬梅, 邓辉。 纳米材料的特异效应及其应用。 自然杂志,1999,22(2): 102~105. [12] 原继红, 韩晓云。 纳米材料的应用。 绥化学院学报,2012,32(1): 184~186. [13] 李彦菊, 高飞。 纳米材料研究进展。 甘肃石油和化工,2011,4: 7~10. [14] 孙成林。 对纳米技术和材料的认识。 硫磷设计与粉体工程,2005,1: 8~11.
纳米材料论文篇8
浅谈纳米尺寸效应及其应用
纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 小尺寸效应。现在从尺寸效应探讨其特性和应用。
随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。量子尺寸效应指当金属或半导体从三维减小至零维时,载流子在各个方向上均受限,随着粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。金属或半导体纳米微粒的电子态由体相材料的连续能带过渡到分立结构的能级,表现在光学吸收谱上从没有结构的宽吸收过渡到具有结构的特征吸收。量子尺寸效应带来的能级改变、能隙变宽,使微粒的发射能量增加,光学吸收向短波长方向移动(蓝移),直观上表现为样品颜色的变化,如CdS微粒由黄色逐渐变为浅黄色,金的微粒失去金属光泽而变为黑色等。同时,纳米微粒也由于能级改变而产生大的光学三阶非线性响应,还原及氧化能力增强,从而具有更优异的光电催化活性[5,6]。
第页 纳米材料与技术是在20世纪80年代末才逐步发展起来的前沿交叉性新兴学科领域,它与住处技术和生物技术一起并称为21世纪三大前沿高新技术,并可能引导下一场工业革命。
纳米技术是严谨的高新交叉技术,人类刚刚迈进门槛,就显现出其强大的生命力。有些纳米材料(如纳米金刚石)经过表面改性和分散,可以均匀分布到聚合物的熔融体中,经过喷丝、冷却形成具有特殊功能的纳米纤维,添加比列很低,但每根短纤维上有成千上万个纳米颗粒。可以作成高抗磨、自清洁、防雨、防紫外线、防静电、杀菌、红外隐形等功能布料,很有发展前景。
将人类带入新的微观世界。人类可以从新的纳米技术领域获得很大好处。利用这项技术的目的是在纳米尺寸上操纵物质,以创造出具有全新分子组织形式的结构。这有可能改变未来材料和装置的生产方式,并且给人类带来巨大的经济益处。
比如,利用精确控制形状和成分的纳米“砖块”,人类有可能合成出自然界没有的材料。然后可以把这些材料组装成更轻更硬的较大结构,而且这种结构还具有课设计性。例如,美国国家科学技术委员会曾经发布的一份研究报告就描述了这些设想的特种新奇材料的特性。这些材料具有多种功能,并能够感知环境变化而且作出相应的反应。比如,预计会出现一种强度是钢铁10倍的材料,具有超导弹性,透明材料和具有更高熔点的材料。吧纳米技术用于储存器,那么可以是整个图书馆的信息放入只有糖块一样大的小装置中。也就是说,纳米技术不只是向小型化迈进了一步,而且是迈入了一个崭新的微观世
第页 界。
传统的解释材料性质的理论,只是用于大于临界长度100纳米的物质。如果一个结构的某个维度小于临界长度,那么物质的性质就常常无法用传统的理论去解释。而科学家正试图在大哥分子或原子尺度到十万个分子的尺度之内发现新奇的现象。
美国国纳米技术计划初期研究的重点是,在分子尺度上具有新奇的特性并且系统、物理和化学性能有明显提高的材料。比如,在纳米尺度上,电子和原子的交互作用受到变化因素的影响。这样,在纳米尺寸上组织物质的结构就有可能使科学家在不改变材料化学成分的前提下,控制物质的基本特性,比如磁性、蓄电能力和催化能力等。又如在纳米尺度,生物系统具有一套成系统的组织,这使科学家能够把人造组件和装配系统放入细胞中,以制造出结构经过组织后的新材料,有可能使人类模拟自然的自行装配。还有,纳米组件有很大的表面积,这能够使它们成为理想的催化剂和吸收剂等,并且在放电能和向人体细胞施药方面派上用场。利用纳米技术制造的材料与一般材料相比,在成分不变的情况下体积会大大缩小而且强度和韧性将得到提高。
美国西北大学开发的一种比色传感器,已经成功探测出结核杆菌。科学家把探测对象的DNA附加在纳米大小的黄金微粒上。当互补的微粒在溶液中存在时,黄金微粒会紧紧地结合在一起,改变悬浮液的颜色。
随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由
第页 于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微粒而言,尺寸变小,同时其比表面积也显著增加,从而产生如下的新奇的性质:特殊的光学性质、热学性质、磁学性质和力学性质。具体的光学性质是当黄金被分割到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,尺寸越小,颜色愈是黑。由此可见,金属超微颗粒对反光的反射率很低。热学性质具有高矫顽力的特征,已经作为高储存密度的磁记录磁粉,大量应用于磁带。利用磁性,人们已经将磁性超微粒制成用途广泛的磁性液体。力学性质是具有良好的任性。因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此变现出很好的韧性和延展性,使陶瓷材料具有新奇的力学性质。美国学者报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所以具有很高的强度,是因为它是有磷酸钙等纳米材料构成的。呈纳米晶粒的金属比传统的粗晶粒金属硬3到5倍。
一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。
我们对纳米材料的认识还远远不够,还需要不断的探索和研究。相信通过不断的深入,一定会使纳米在更多的领域里发挥作用,服务于生产和生活。
第页
参考文献:
张力德、牟季美《纳米材料和纳米结构》科学出版社,2002 陈敬忠、刘剑洪《纳米材料科学导论》高等教育出版社,2006 黄昆原著,韩汝琦改编,《固体物理学》高等教育出版社,1988
第页
推荐访问: 纳米材料 论文 纳米材料论文参考文献 纳米材料论文3000字 纳米材料论文2000字 纳米材料论文5000字 纳米材料论文题目 纳米材料论文摘要 纳米材料论文英文版及翻译 纳米材料论文1500字 纳米材料论文引言 纳米材料论文结束语版权声明:
1.赢正文档网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《2023年度纳米材料论文8篇(完整文档)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。