深度电子病历分析研究综述
摘要:伴随医院信息化建设,大量的电子病历数据得以保存,但如何分析和利用这些数据成为医疗健康领域一个重要的研究课题。深度电子病历分析以深度学习技术为基础,通过特征自学习,避免了在数据预处理和特征工程上耗费大量时间,而且还能有效捕获数据间的未知关系,提高算法性能。本文首先概述了5类常用的深度学习模型及其变体,其次详细分析了这5类模型在电子病历分析上的应用情况,最后从数据异质性、公开数据集和模型可解释性三个方面对这一领域当前的机遇和挑战做了总结。
关键词:电子病历;深度学习;卷积神经网络;循环神经网络
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2018)15-0301-04
An Overview of Research on Deep Electronic Health Record Analysis
JIANG You-hao1,2
(1.Department of Control Science and Engineering School of Electronics and Information Engineering Tongji University,Shanghai 201804,China;2.Shanghai Putuo District Central Hospital, Shanghai 200062, China)
Abstract:With the development of hospital informatization, the vast amounts of raw electronic health records have been saved. But how to analyze and utilize these data becomes an important research topic in the field of healthcare. Based on deep learning technologies, deep electronic health record analysis models not only can learn features directly from the data itself, avoiding the cost of time on data preprocessing and feature engineering, but also can gain high performance by effectively capturing latent relationships between data. In this paper, five commonly used deep learning models and their variants are firstly discussed, and then analyzes some electronic health record analysis applications in detail. Finally, we summarize the current opportunities and challenges from three aspects: data heterogeneity, public datasets and model interpretability.
Key words: Electronic Health Record (HER); Deep Learning; Convolutional Neural Networks (CNN); Recurrent Neural Network (RNN)
引言
隨着医院信息化建设不断深入,电子病历(Electronic Health Record,EHR)系统在临床诊疗过程中得到了广泛应用,也因此产生了大量的医疗数据。这些数据记录了患者所有的诊治历史,包括人口统计学信息、诊断、实验室检验结果、放射影像、处方、临床记录等[1]。之前,电子病历数据主要被用来提高临床诊疗效率,并方便医院管理。但随着大数据和人工智能技术的飞速发展,许多研究者认为电子病历数据对提高医护质量、保障患者安全、降低治疗费用等方面大有裨益[2-4]。
尽管电子病历数据越来越容易获取,但其异质的特性给分析带来了巨大的挑战。从表示形式上来看,电子病历数据有以下5种类型:1)数值型,如年龄、体重;2)时间日期型,如入院时间、处方开立日期;3)类别型,主要是受控词表中的代码,如性别、国际疾病分类代码ICD-10;4)自然语言书写的自由文本,如放射学报告、出院小结;5)时间序列,即按时间顺序排列的一段数值或一组文本,如生命体征监护记录、病程记录[5]。面对这些异质的数据类型,传统的机器学习与统计技术通过从数据中抽取一组特征来表征数据,并作为模型的输入,训练各种分析模型。但上述方法存在两点不足:1)特征是人手工抽取,依赖于专家的领域知识,这些知识通常都是已知的,不能发现数据间的未知关系;2)80%的工作用于数据的清洗、预处理等,大大限制了模型的可伸缩性[4]。
近年来,深度学习在许多领域都取得了巨大的成功,通过深层次的分层特征构建,有效地捕获数据间的未知关系[6]。相比于传统的机器学习方法,深度学习通过直接从数据本身习得最优特征,不需要人工指导,实现了特征的自学习,并能自动发现那些数据间未知或隐含的关系。当前,已有研究人员将深度学习应用在电子病历分析上,取得了比传统机器学习方法更好的结果,而且在数据预处理和特征工程上耗费更少的时间。
基于前人工作,本文从深度学习模型的角度回顾了深度电子病历分析领域取得的众多研究成果。在接下来的部分,第2节概述5类常用的深度学习模型及其变体,第3节详细分析这5类模型在电子病历分析上的应用情况,最后第4节总结当前面临的挑战并展望未来的发展方向。
推荐访问: 分析研究 病历 综述 深度 电子版权声明:
1.赢正文档网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《深度电子病历分析研究综述》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。
本栏目阅读排行
- 1“圆”审美视域下壮族民间舞蹈“圆”美探索
- 2党员各种谈心谈话记录 学生党员一对一谈心谈话记录
- 3发展具有中国特色、世界水平的现代教育
- 4小学疫情防控应急预案 小学疫情防控工作方案和应急预案
- 5中南海里的“除四害”\“大炼钢”行动
- 6浅谈高原之宝牦牛奶制品的营销策略
- 7党支部会议程序 党组织开会
- 8202X年全员新冠病毒核酸检测工作应急预案三篇 关于全员核酸检测应急准备情况的报告
- 92020年新冠肺炎疫情防控排查工作方案例文稿 制定新冠肺炎疫情防控工作方案
- 10美国海军航天遥感技术述评
- 11中小学疫情防控期间师生错峰就餐实施方案 中小学疫情期间食堂错峰就餐方案疫情防控食堂错峰就餐安排
- 12学校2021年秋冬季疫情防控工作方案 快递行业秋冬季疫情防控工作方案